105 research outputs found

    Two-tier channel estimation aided near-capacity MIMO transceivers relying on norm-based joint transmit and receive antenna selection

    No full text
    We propose a norm-based joint transmit and receive antenna selection (NBJTRAS) aided near-capacity multiple-input multiple-output (MIMO) system relying on the assistance of a novel two-tier channel estimation scheme. Specifically, a rough estimate of the full MIMO channel is first generated using a low-complexity, low-training-overhead minimum mean square error based channel estimator, which relies on reusing a modest number of radio frequency (RF) chains. NBJTRAS is then carried out based on this initial full MIMO channel estimate. The NBJTRAS aided MIMO system is capable of significantly outperforming conventional MIMO systems equipped with the same modest number of RF chains, while dispensing with the idealised simplifying assumption of having perfectly known channel state information (CSI). Moreover, the initial subset channel estimate associated with the selected subset MIMO channel matrix is then used for activating a powerful semi-blind joint channel estimation and turbo detector-decoder, in which the channel estimate is refined by a novel block-of-bits selection based soft-decision aided channel estimator (BBSB-SDACE) embedded in the iterative detection and decoding process. The joint channel estimation and turbo detection-decoding scheme operating with the aid of the proposed BBSB-SDACE channel estimator is capable of approaching the performance of the near-capacity maximumlikelihood (ML) turbo transceiver associated with perfect CSI. This is achieved without increasing the complexity of the ML turbo detection and decoding process

    Factor graph based detection approach for high-mobility OFDM systems with large FFT modes

    Get PDF
    In this article, a novel detector design is proposed for orthogonal frequency division multiplexing (OFDM) systems over frequency selective and time varying channels. Namely, we focus on systems with large OFDM symbol lengths where design and complexity constraints have to be taken into account and many of the existing ICI reduction techniques can not be applied. We propose a factor graph (FG) based approach for maximum a posteriori (MAP) symbol detection which exploits the frequency diversity introduced by the ICI in the OFDM symbol. The proposed algorithm provides high diversity orders allowing to outperform the free-ICI performance in high-mobility scenarios with an inherent parallel structure suitable for large OFDM block sizes. The performance of the mentioned near-optimal detection strategy is analyzed over a general bit-interleaved coded modulation (BICM) system applying low-density parity-check (LDPC) codes. The inclusion of pilot symbols is also considered in order to analyze how they assist the detection process

    Decision-Directed Channel Estimation Implementation for Spectral Efficiency Improvement in Mobile MIMO-OFDM

    Get PDF
    Channel estimation algorithms and their implementations for mobile receivers are considered in this paper. The 3GPP long term evolution (LTE) based pilot structure is used as a benchmark in a multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) receiver. The decision directed (DD) space alternating generalized expectation-maximization (SAGE) algorithm is used to improve the performance from that of the pilot symbol based least-squares (LS) channel estimator. The performance is improved with high user velocities, where the pilot symbol density is not sufficient. Minimum mean square error (MMSE) filtering is also used in estimating the channel in between pilot symbols. The pilot overhead can be reduced to a third of the LTE pilot overhead with DD channel estimation, obtaining a ten percent increase in data throughput. Complexity reduction and latency issues are considered in the architecture design. The pilot based LS, MMSE and the SAGE channel estimators are implemented with a high level synthesis tool, synthesized with the UMC 0.18 ÎŒm CMOS technology and the performance-complexity trade-offs are studied. The MMSE estimator improves the performance from the simple LS estimator with LTE pilot structure and has low power consumption. The SAGE estimator has high power consumption but can be used with reduced pilot density to increase the data rate.National Science FoundationTekesElektrobitRenesas Mobile EuropeAcademy of FinlandNokia Siemens NetworksXilin

    Estimation and detection techniques for doubly-selective channels in wireless communications

    Get PDF
    A fundamental problem in communications is the estimation of the channel. The signal transmitted through a communications channel undergoes distortions so that it is often received in an unrecognizable form at the receiver. The receiver must expend significant signal processing effort in order to be able to decode the transmit signal from this received signal. This signal processing requires knowledge of how the channel distorts the transmit signal, i.e. channel knowledge. To maintain a reliable link, the channel must be estimated and tracked by the receiver. The estimation of the channel at the receiver often proceeds by transmission of a signal called the 'pilot' which is known a priori to the receiver. The receiver forms its estimate of the transmitted signal based on how this known signal is distorted by the channel, i.e. it estimates the channel from the received signal and the pilot. This design of the pilot is a function of the modulation, the type of training and the channel. [Continues.

    Investigation of non-binary trellis codes designed for impulsive noise environments

    Get PDF
    PhD ThesisIt is well known that binary codes with iterative decoders can achieve near Shannon limit performance on the additive white Gaussian noise (AWGN) channel, but their performance on more realistic wired or wireless channels can become degraded due to the presence of burst errors or impulsive noise. In such extreme environments, error correction alone cannot combat the serious e ect of the channel and must be combined with the signal processing techniques such as channel estimation, channel equalisation and orthogonal frequency division multiplexing (OFDM). However, even after the received signal has been processed, it can still contain burst errors, or the noise present in the signal maybe non Gaussian. In these cases, popular binary coding schemes such as Low-Density Parity-Check (LDPC) or turbo codes may not perform optimally, resulting in the degradation of performance. Nevertheless, there is still scope for the design of new non-binary codes that are more suitable for these environments, allowing us to achieve further gains in performance. In this thesis, an investigation into good non-binary trellis error-correcting codes and advanced noise reduction techniques has been carried out with the aim of enhancing the performance of wired and wireless communication networks in di erent extreme environments. These environments include, urban, indoor, pedestrian, underwater, and powerline communication (PLC). This work includes an examination of the performance of non-binary trellis codes in harsh scenarios such as underwater communications when the noise channel is additive S S noise. Similar work was also conducted for single input single output (SISO) power line communication systems for single carrier (SC) and multi carrier (MC) over realistic multi-path frequency selective channels. A further examination of multi-input multi-output (MIMO) wired and wireless systems on Middleton class A noise channel was carried out. The main focus of the project was non-binary coding schemes as it is well-known that they outperform their binary counterparts when the channel is bursty. However, few studies have investigated non-binary codes for other environments. The major novelty of this work is the comparison of the performance of non-binary trellis codes with binary trellis codes in various scenarios, leading to the conclusion that non-binary codes are, in most cases, superior in performance to binary codes. Furthermore, the theoretical bounds of SISO and MIMO binary and non-binary convolutional coded OFDM-PLC systems have been investigated for the rst time. In order to validate our results, the implementation of simulated and theoretical results have been obtained for di erent values of noise parameters and on di erent PLC channels. The results show a strong agreement between the simulated and theoretical analysis for all cases.University of Thi-Qar for choosing me for their PhD scholarship and the Iraqi Ministry of Higher Education and Scienti c Research (MOHESR) for granting me the funds to study in UK. In addition, there was ample support towards my stay in the UK from the Iraqi Cultural Attach e in Londo

    On multiple-antenna communications: signal detection, error exponent and and quality of service

    Get PDF
    Motivated by the demand of increasing data rate in wireless communication, multiple-antenna communication is becoming a key technology in the next generation wireless system. This dissertation considers three different aspects of multipleantenna communication. The first part is signal detection in the multiple-input multiple-output (MIMO) communication. Some low complexity near optimal detectors are designed based on an improved version of Bell Laboratories Layered Space-Time (BLAST) architecture detection and an iterative space alternating generalized expectation-maximization (SAGE) algorithm. The proposed algorithms can almost achieve the performance of optimal maximum likelihood detection. Signal detections without channel knowledge (noncoherent) and with co-channel interference are also investigated. Novel solutions are proposed with near optimal performance. Secondly, the error exponent of the distributed multiple-antenna communication (relay) in the windband regime is computed. Optimal power allocation between the source and relay node, and geometrical relay node placement are investigated based on the error exponent analysis. Lastly, the quality of service (QoS) of MIMO/single-input single- output(SISO) communication is studied. The tradeoff of the end-to-end distortion and transmission buffer delay is derived. Also, the SNR exponent of the distortion is computed for MIMO communication, which can provide some insights of the interplay among time diversity, space diversity and the spatial multiplex gain

    Code optimization and analysis for multiple-input and multiple-output communication systems

    Get PDF
    Design and analysis of random-like codes for various multiple-input and multiple-output communication systems are addressed in this work. Random-like codes have drawn significant interest because they offer capacity-achieving performance. We first consider the analysis and design of low-density parity-check (LDPC) codes for turbo multiuser detection in multipath CDMA channels. We develop techniques for computing the probability density function (pdf) of the extrinsic messages at the output of the soft-input soft-output (SISO) multiuser detectors as a function of the pdf of input extrinsic messages, user spreading codes, channel impulse responses, and signal-to-noise ratios. Using these techniques, we are able to accurately compute the thresholds for LDPC codes and design good irregular LDPC codes. We then apply the tools of density evolution with mixture Gaussian approximations to optimize irregular LDPC codes and to compute minimum operational signal-to-noise ratios for ergodic MIMO OFDM channels. In particular, the optimization is done for various MIMO OFDM system configurations which include different number of antennas, different channel models and different demodulation schemes. We also study the coding-spreading tradeoff in LDPC coded CDMA systems employing multiuser joint decoding. We solve the coding-spreading optimization based on the extrinsic information SNR evolution curves for the SISO multiuser detectors and the SISO LDPC decoders. Both single-cell and multi-cell scenarios will be considered. For each of these cases, we will characterize the extrinsic information for both finite-size systems and the so-called large systems where asymptotic performance results must be evoked. Finally, we consider the design optimization of irregular repeat accumulate (IRA) codes for MIMO communication systems employing iterative receivers. We present the density evolution-based procedure with Gaussian approximation for optimizing the IRA code ensemble. We adopt an approximation method based on linear programming to design an IRA code with the extrinsic information transfer (EXIT) chart matched to that of the soft MIMO demodulator

    Récepteur itératif pour les systÚmes MIMO-OFDM basé sur le décodage sphérique : convergence, performance et complexité

    Get PDF
    Recently, iterative processing has been widely considered to achieve near-capacity performance and reliable high data rate transmission, for future wireless communication systems. However, such an iterative processing poses significant challenges for efficient receiver design. In this thesis, iterative receiver combining multiple-input multiple-output (MIMO) detection with channel decoding is investigated for high data rate transmission. The convergence, the performance and the computational complexity of the iterative receiver for MIMO-OFDM system are considered. First, we review the most relevant hard-output and soft-output MIMO detection algorithms based on sphere decoding, K-Best decoding, and interference cancellation. Consequently, a low-complexity K-best (LCK- Best) based decoder is proposed in order to substantially reduce the computational complexity without significant performance degradation. We then analyze the convergence behaviors of combining these detection algorithms with various forward error correction codes, namely LTE turbo decoder and LDPC decoder with the help of Extrinsic Information Transfer (EXIT) charts. Based on this analysis, a new scheduling order of the required inner and outer iterations is suggested. The performance of the proposed receiver is evaluated in various LTE channel environments, and compared with other MIMO detection schemes. Secondly, the computational complexity of the iterative receiver with different channel coding techniques is evaluated and compared for different modulation orders and coding rates. Simulation results show that our proposed approaches achieve near optimal performance but more importantly it can substantially reduce the computational complexity of the system. From a practical point of view, fixed-point representation is usually used in order to reduce the hardware costs in terms of area, power consumption and execution time. Therefore, we present efficient fixed point arithmetic of the proposed iterative receiver based on LC-KBest decoder. Additionally, the impact of the channel estimation on the system performance is studied. The proposed iterative receiver is tested in a real-time environment using the MIMO WARP platform.Pour permettre l’accroissement de dĂ©bit et de robustesse dans les futurs systĂšmes de communication sans fil, les processus itĂ©ratifs sont de plus considĂ©rĂ©s dans les rĂ©cepteurs. Cependant, l’adoption d’un traitement itĂ©ratif pose des dĂ©fis importants dans la conception du rĂ©cepteur. Dans cette thĂšse, un rĂ©cepteur itĂ©ratif combinant les techniques de dĂ©tection multi-antennes avec le dĂ©codage de canal est Ă©tudiĂ©. Trois aspects sont considĂ©rĂ©s dans un contexte MIMOOFDM: la convergence, la performance et la complexitĂ© du rĂ©cepteur. Dans un premier temps, nous Ă©tudions les diffĂ©rents algorithmes de dĂ©tection MIMO Ă  dĂ©cision dure et souple basĂ©s sur l’égalisation, le dĂ©codage sphĂ©rique, le dĂ©codage K-Best et l’annulation d’interfĂ©rence. Un dĂ©codeur K-best de faible complexitĂ© (LC-K-Best) est proposĂ© pour rĂ©duire la complexitĂ© sans dĂ©gradation significative des performances. Nous analysons ensuite la convergence de la combinaison de ces algorithmes de dĂ©tection avec diffĂ©rentes techniques de codage de canal, notamment le dĂ©codeur turbo et le dĂ©codeur LDPC en utilisant le diagramme EXIT. En se basant sur cette analyse, un nouvel ordonnancement des itĂ©rations internes et externes nĂ©cessaires est proposĂ©. Les performances du rĂ©cepteur ainsi proposĂ© sont Ă©valuĂ©es dans diffĂ©rents modĂšles de canal LTE, et comparĂ©es avec diffĂ©rentes techniques de dĂ©tection MIMO. Ensuite, la complexitĂ© des rĂ©cepteurs itĂ©ratifs avec diffĂ©rentes techniques de codage de canal est Ă©tudiĂ©e et comparĂ©e pour diffĂ©rents modulations et rendement de code. Les rĂ©sultats de simulation montrent que les approches proposĂ©es offrent un bon compromis entre performance et complexitĂ©. D’un point de vue implĂ©mentation, la reprĂ©sentation en virgule fixe est gĂ©nĂ©ralement utilisĂ©e afin de rĂ©duire les coĂ»ts en termes de surface, de consommation d’énergie et de temps d’exĂ©cution. Nous prĂ©sentons ainsi une reprĂ©sentation en virgule fixe du rĂ©cepteur itĂ©ratif proposĂ© basĂ© sur le dĂ©codeur LC K-Best. En outre, nous Ă©tudions l’impact de l’estimation de canal sur la performance du systĂšme. Finalement, le rĂ©cepteur MIMOOFDM itĂ©ratif est testĂ© sur la plateforme matĂ©rielle WARP, validant le schĂ©ma proposĂ©

    On adaptive transmission, signal detection and channel estimation for multiple antenna systems

    Get PDF
    This research concerns analysis of system capacity, development of adaptive transmission schemes with known channel state information at the transmitter (CSIT) and design of new signal detection and channel estimation schemes with low complexity in some multiple antenna systems. We first analyze the sum-rate capacity of the downlink of a cellular system with multiple transmit antennas and multiple receive antennas assuming perfect CSIT. We evaluate the ergodic sum-rate capacity and show how the sum-rate capacity increases as the number of users and the number of receive antennas increases. We develop upper and lower bounds on the sum-rate capacity and study various adaptive MIMO schemes to achieve, or approach, the sum-rate capacity. Next, we study the minimum outage probability transmission schemes in a multiple-input-single-output (MISO) flat fading channel assuming partial CSIT. Considering two special cases: the mean feedback and the covariance feedback, we derive the optimum spatial transmission directions and show that the associated optimum power allocation scheme, which minimizes the outage probability, is closely related to the target rate and the accuracy of the CSIT. Since CSIT is obtained at the cost of feedback bandwidth, we also consider optimal allocation of bandwidth between the data channel and the feedback channel in order to maximize the average throughput of the data channel in MISO, flat fading, frequency division duplex (FDD) systems. We show that beamforming based on feedback CSI can achieve an average rate larger than the capacity without CSIT under a wide range of mobility conditions. We next study a SAGE-aided List-BLAST detection scheme for MIMO systems which can achieve performance close to that of the maximum-likelihood detector with low complexity. Finally, we apply the EM and SAGE algorithms in channel estimation for OFDM systems with multiple transmit antennas and compare them with a recently proposed least-squares based estimation algorithm. The EM and SAGE algorithms partition the problem of estimating a multi-input channel into independent channel estimation for each transmit-receive antenna pair, therefore avoiding the matrix inversion encountered in the joint least-squares estimation
    • 

    corecore