19 research outputs found

    Survey on the state-of-the-art in device-to-device communication: A resource allocation perspective

    Get PDF
    Device to Device (D2D) communication takes advantage of the proximity between the communicating devices in order to achieve efficient resource utilization, improved throughput and energy efficiency, simultaneous serviceability and reduced latency. One of the main characteristics of D2D communication is reuse of the frequency resource in order to improve spectral efficiency of the system. Nevertheless, frequency reuse introduces significantly high interference levels thus necessitating efficient resource allocation algorithms that can enable simultaneous communication sessions through effective channel and/or power allocation. This survey paper presents a comprehensive investigation of the state-of-the-art resource allocation algorithms in D2D communication underlaying cellular networks. The surveyed algorithms are evaluated based on heterogeneous parameters which constitute the elementary features of a resource allocation algorithm in D2D paradigm. Additionally, in order to familiarize the readers with the basic design of the surveyed resource allocation algorithms, brief description of the mode of operation of each algorithm is presented. The surveyed algorithms are divided into four categories based on their technical doctrine i.e., conventional optimization based, Non-Orthogonal-MultipleAccess (NOMA) based, game theory based and machine learning based techniques. Towards the end, several open challenges are remarked as the future research directions in resource allocation for D2D communication

    A Comprehensive Review of D2D Communication in 5G and B5G Networks

    Get PDF
    The evolution of Device-to-device (D2D) communication represents a significant breakthrough within the realm of mobile technology, particularly in the context of 5G and beyond 5G (B5G) networks. This innovation streamlines the process of data transfer between devices that are in close physical proximity to each other. D2D communication capitalizes on the capabilities of nearby devices to communicate directly with one another, thereby optimizing the efficient utilization of available network resources, reducing latency, enhancing data transmission speed, and increasing the overall network capacity. In essence, it empowers more effective and rapid data sharing among neighboring devices, which is especially advantageous within the advanced landscape of mobile networks such as 5G and B5G. The development of D2D communication is largely driven by mobile operators who gather and leverage short-range communications data to propel this technology forward. This data is vital for maintaining proximity-based services and enhancing network performance. The primary objective of this research is to provide a comprehensive overview of recent progress in different aspects of D2D communication, including the discovery process, mode selection methods, interference management, power allocation, and how D2D is employed in 5G technologies. Furthermore, the study also underscores the unresolved issues and identifies the challenges associated with D2D communication, shedding light on areas that need further exploration and developmen

    Secrecy-Optimized Resource Allocation for Device-to-Device Communication Undelaying Cellular Networks

    Get PDF
    L’objectif principal de l’introduction de la communication de pĂ©riphĂ©rique-Ă -pĂ©riphĂ©rique «device-to-device» (D2D) sous-jacente aux systĂšmes de communication sans fil de cinquiĂšme gĂ©nĂ©ration (5G), est d’augmenter l’efficacitĂ© spectrale (ES). Cependant, la communication D2D sous-jacente aux rĂ©seaux cellulaires peut entraĂźner une dĂ©gradation des performances causĂ©e par des co-interfĂ©rences de canal sĂ©vĂšres entre les liaisons cellulaires et D2D. De plus, en raison de la complexitĂ© du contrĂŽle et de la gestion, les connexions directes entre les appareils Ă  proximitĂ© sont vulnĂ©rables. En consĂ©quence, la communication D2D n’est pas robuste contre les menaces de sĂ©curitĂ© et l’écoute clandestine. Pourtant, les co-interfĂ©rences de canal peuvent ĂȘtre adoptĂ©es pour aider les utilisateurs cellulaires (UC) et les paires D2D afin d’empĂȘcher l’écoute clandestine. Dans cette thĂšse, nous Ă©tudions diffĂ©rents scĂ©narios de problĂšmes d’allocation de ressources en utilisant le concept de sĂ©curitĂ© de couche physique «physical layer security» (PLS) pour la communication D2D sous-jacente aux rĂ©seaux cellulaires, tout en satisfaisant les exigences minimales de qualitĂ© de service (QoS) des liaisons cellulaires et D2D. Dans le cas oĂč PLS est pris en compte, l’interfĂ©rence peut aider Ă  rĂ©duire l’écoute clandestine. PremiĂšrement, nous formulons un scĂ©nario d’allocation de ressources dans lequel chaque bloc de ressources (RB) temps-frĂ©quence de multiplexage par rĂ©partition orthogonale en frĂ©quence (OFDM) peut ĂȘtre partagĂ© par une seule CU et une paire D2D dans un rĂ©seau unicellulaire. Le problĂšme formulĂ© est rĂ©duit au problĂšme de correspondance tridimensionnelle, qui est gĂ©nĂ©ralement NP-difficile, et la solution optimale peut ĂȘtre obtenue par des mĂ©thodes compliquĂ©es, telles que la recherche par force brute et/ou l’algorithme de branchement et de liaison qui ont une complexitĂ© de calcul exponentielle. Nous proposons donc une mĂ©ta-heuristique basĂ©e sur l’algorithme de recherche tabou «Tabu Search» (TS) avec une complexitĂ© de calcul rĂ©duite pour trouver globalement la solution d’allocation de ressources radio quasi-optimale.----------ABSTRACT: The primary goal of introducing device-to-device (D2D) communication underlying fifthgeneration (5G) wireless communication systems is to increase spectral efficiency (ES). However, D2D communication underlying cellular networks can lead to performance degradation caused by severe co-channel interference between cellular and D2D links. In addition, due to the complexity of control and management, direct connections between nearby devices are vulnerable. Thus, D2D communication is not robust against security threats and eavesdropping. On the other hand, the co-channel interference can be adopted to help cellular users (CUs) and D2D pairs to prevent eavesdropping. In this thesis, we investigate different resource allocation problem scenarios using the physical layer security (PLS) concept for the D2D communication underlying cellular networks, while satisfying the minimum quality of service (QoS) requirements of cellular and D2D link. If the PLS is taken into account, the interference can help reduce eavesdropping. First, we formulate a resource allocation scenario in which each orthogonal frequency-division multiplexing (OFDM) time-frequency resource block (RB) can be shared by one single CU and one D2D pair in a single-cell network. The formulated problem is reduced to the threedimensional matching problem, which is generally NP-hard, and the optimal solution can be obtained through the complicated methods, such as brute-force search and/or branch-andbound algorithm that have exponential computational complexity. We, therefore, propose a meta-heuristic based on Tabu Search (TS) algorithm with a reduced computational complexity to globally find the near-optimal radio resource allocation solution

    Non-convex Optimization for Resource Allocation in Wireless Device-to-Device Communications

    Get PDF
    Device-to-device (D2D) communication is considered one of the key frameworks to provide suitable solutions for the exponentially increasing data tra c in mobile telecommunications. In this PhD Thesis, we focus on the resource allocation for underlay D2D communications which often results in a non-convex optimization problem that is computationally demanding. We have also reviewed many of the works on D2D underlay communications and identi ed some of the limitations that were not handled previously, which has motivated our works in this Thesis. Our rst works focus on the joint power allocation and channel assignment problem in the D2D underlay communication scenario for a unicast single-input and single-output (SISO) cellular network in either uplink or downlink spectrums. These works also consider several degrees of uncertainty in the channel state information (CSI), and propose suitable measures to guarantee the quality of service (QoS) and reliability under those conditions. Moreover, we also present a few algorithms that can be used to jointly assign uplink and downlink spectrum to D2D pairs. We also provide methods to decentralize those algorithms with convergence guarantees and analyze their computational complexity. We also consider both cases with no interference among D2D pairs and cases with interference among D2D pairs. Additionally, we propose the formulation of an optimization objective function that combines the network rate with a penalty function that penalizes unfair channel allocations where most of the channels are assigned to only a few D2D pairs. The next contributions of this Thesis focus on extending the previous works to cellular networks with multiple-input and multiple-output (MIMO) capabilities and networks with D2D multicast groups. We also present several methods to accommodate various degrees of uncertainty in the CSI and also guarantee di erent measures of QoS and reliability. All our algorithms are evaluated extensively through extensive numerical experiments using the Matlab simulation environment. All of these results show favorable performance, as compared to the existing state-of-the-art alternatives.publishedVersio

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching

    Radio Resource Management for Unmanned Aerial Vehicle Assisted Wireless Communications and Networking

    Get PDF
    In recent years, employing unmanned aerial vehicles (UAVs) as aerial communication platforms or users is envisioned as a promising solution to enhance the performance of the existing wireless communication systems. However, applying UAVs for information technology applications also introduces many new challenges. This thesis focuses on the UAV-assisted wireless communication and networking, and aims to address the challenges through exploiting and designing efficient radio resource management methods. Specifically, four research topics are studied in this thesis. Firstly, to address the constraint of network heterogeneity and leverage the benefits of diversity of UAVs, a hierarchical air-ground heterogeneous network architecture enabled by software defined networking is proposed, which integrates both high and low altitude platforms into conventional terrestrial networks to provide additional capacity enhancement and expand the coverage of current network systems. Secondly, to address the constraint of link disconnection and guarantee the reliable communications among UAVs as aerial user equipment to perform sensing tasks, a robust resource allocation scheme is designed while taking into account the dynamic features and different requirements for different UAV transmission connections. Thirdly, to address the constraint of privacy and security threat and motivate the spectrum sharing between cellular and UAV operators, a blockchain-based secure spectrum trading framework is constructed where mobile network operators and UAV operators can share spectrum in a distributed and trusted environment based on blockchain technology to protect users' privacy and data security. Fourthly, to address the constraint of low endurance of UAV and prolong its flight time as an aerial base station for delivering communication coverage in a disaster area, an energy efficiency maximization problem jointly optimizing user association, UAV's transmission power and trajectory is studied in which laser charging is exploited to supply sustainable energy to enable the UAV to operate in the sky for a long time

    Energy Efficient Resource Allocation for Wireless Powered Communication Networks

    Get PDF
    The exponential growth of smart wireless devices has put much pressure on the spectral efficiency and energy efficiency (EE) of the Internet of things (IoT) networks and wireless sensor networks. In order to support energy constrained wireless devices, wireless powered communication networks (WPCN) have been proposed based on different wireless powered transmission (WPT) technologies, e.g., simultaneous wireless information and power transfer (SWIPT), harvest then transmit (HTT) and backscatter communication (BackCom). We note that energy-efficient resource allocation schemes need to be tailored to the different WPT technologies used in WPCNs. In this thesis (including four papers), we classify WPCNs into three types according to the way of information transmission: active transmission, passive transmission and hybrid transmission, and present energy-efficient resource allocation schemes for them in different scenarios of WPCNs. In active transmission-based WPCNs, a radio frequency (RF) power source, e.g., a base station (BS) or a power beacon (PB), sends an RF signal to a transmitter, which harvests energy from the received RF signal through its energy harvesting (EH) circuit and generates its own RF signal to carry information to a receiver. In Paper I, we consider a SWIPT-enabled device-to-device (D2D) underlaid network, where a D2D receiver decodes information and harvests energy from its associated D2D transmitter simultaneously via its SWIPT circuit, and propose to maximize the sum EE of all D2D links by optimizing the spectrum resource and power allocation, and the power splitting ratio of each D2D device based on a non-linear EH model. We find that the number of SWIPT-enabled D2D links that maximize the sum EE is limited by the EH circuit sensitivity, especially when the D2D communication distance is long. In passive transmission-based WPCNs, an RF power source sends an RF signal to a backscatter device (BD), which backscatters parts of the incident RF signal to a receiver and harvests energy from the rest of the incident RF signal to support the backscatter circuit. In Paper II, we propose to ensure the max-min EE fairness among the backscatter links by jointly optimizing the PB transmission power and the backscatter reflection coefficients. Our results show that the proposed max-min EE resource allocation scheme is more effective when the throughput requirement of the BDs is lower and the channel power gain difference among different PB-to-BD links is smaller. In Paper III, we propose to maximize the system EE of a symbiotic radio (SR) network that contains a primary link and multiple BDs, each being able to harvest energy while backscattering, by optimizing the primary transmitter (PT) transmission power, the BDs' reflection coefficients and time division multiple access (TDMA) time slot durations for both the parasitic SR (PSR) and commensal SR (CSR) cases. The simulation results show that the system EE is maximized when all BDs only achieve the minimum throughput requirement in the PSR case, while in the CSR case, the system EE is maximized when a best BD that can contribute the most toward the system EE is allocated the maximum allowed time to backscatter its information to the primary receiver (PR), and this best BD is determined by the optimized PT transmission power in the corresponding time slot. In hybrid transmission-based WPCNs, the wireless devices are equipped with both the RF signal generation circuit and the backscatter circuit to support active transmission and passive transmission, respectively. In paper IV, we maximize the total EE of all the IoT nodes, which are powered by an unmanned aerial vehicle (UAV) and need to send information to a reader, by optimizing the UAV's transmit power and trajectory, the IoT nodes' backscatter reflection coefficients, transmit power for active transmission, and time allocation between backscattering and active transmission. Our results show that the UAV tends to fly toward the IoT nodes with better channel conditions to the reader, and the maximum total EE of the IoT nodes is achieved when the IoT node that is closest to the reader achieves the highest throughput, while other IoT nodes maintaining the minimum throughout requirement
    corecore