13,063 research outputs found

    Iterative learning control for impulsive multi-agent systems with varying trial lengths

    Get PDF
    In this paper, we introduce iterative learning control (ILC) schemes with varying trial lengths (VTL) to control impulsive multi-agent systems (I-MAS). We use domain alignment operator to characterize each tracking error to ensure that the error can completely update the control function during each iteration. Then we analyze the system’s uniform convergence to the target leader. Further, we use two local average operators to optimize the control function such that it can make full use of the iteration error. Finally, numerical examples are provided to verify the theoretical results

    Machine learning based iterative learning control for non-repetitive time-varying systems

    Full text link
    The repetitive tracking task for time-varying systems (TVSs) with non-repetitive time-varying parameters, which is also called non-repetitive TVSs, is realized in this paper using iterative learning control (ILC). A machine learning (ML) based nominal model update mechanism, which utilizes the linear regression technique to update the nominal model at each ILC trial only using the current trial information, is proposed for non-repetitive TVSs in order to enhance the ILC performance. Given that the ML mechanism forces the model uncertainties to remain within the ILC robust tolerance, an ILC update law is proposed to deal with non-repetitive TVSs. How to tune parameters inside ML and ILC algorithms to achieve the desired aggregate performance is also provided. The robustness and reliability of the proposed method are verified by simulations. Comparison with current state-of-the-art demonstrates its superior control performance in terms of controlling precision. This paper broadens ILC applications from time-invariant systems to non-repetitive TVSs, adopts ML regression technique to estimate non-repetitive time-varying parameters between two ILC trials and proposes a detailed parameter tuning mechanism to achieve desired performance, which are the main contributions

    Commutation-Angle Iterative Learning Control for Intermittent Data: Enhancing Piezo-Stepper Actuator Waveforms

    Get PDF
    Piezo-stepper actuators are used in many nanopositioning systems due to their high resolution, high stiffness, fast response, and the ability to position a mover over an infinite stroke by means of motion reminiscent of walking. The aim of this paper is to develop a control approach for attenuating disturbances that are caused by the walking motion and are therefore repeating in the commutation-angle domain. A new iterative learning control approach is developed for the commutation-angle domain, that addresses the iteration-varying and non-equidistant sampling that occurs when the piezo-stepper actuator is driven at varying drive frequencies by parameterizing the input and error signals. Experimental validation of the framework on a piezo-stepper actuator leads to significant performance improvements.Comment: 6 pages, 8 figures, 21st IFAC World Congress 202

    ON ITERATIVE LEARNING CONTROL FOR SOLVING NEW CONTROL PROBLEMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Design and development of the ‘POD Adventures’ smartphone game: a blended problem-solving intervention for adolescent mental health in India

    Get PDF
    Introduction: Digital technology platforms offer unparalleled opportunities to reach vulnerable adolescents at scale and overcome many barriers that exist around conventional service provision. This paper describes the design and development of POD Adventures, a blended problem-solving game-based intervention for adolescents with or at risk of anxiety, depression and conduct difficulties in India. This intervention was developed as part of the PRemIum for ADolEscents (PRIDE) research programme, which aims to establish a suite of transdiagnostic psychological interventions organised around a stepped care system in Indian secondary schools. Methods and materials: Intervention development followed a person-centered approach consisting of four iterative activities: (i) review of recent context-specific evidence on mental health needs and preferences for the target population of school-going Indian adolescents, including a multiple stakeholder analysis of school counselling priorities and pilot studies of a brief problem-solving intervention; (ii) new focus group discussions with N=46 student participants and N=8 service providers; (iii) co-design workshops with N=22 student participants and N=8 service providers; and (iv) user-testing with N=50 student participants. Participants were aged 12-17 years and recruited from local schools in New Delhi and Goa, including a subgroup with self-identified mental health needs (N=6). Results: Formative data from existing primary sources, new focus groups and co-design workshops supported a blended format for delivering a brief problem-solving intervention, with counsellors supporting use of a game-based app on ‘offline’ smartphones. User-testing with prototypes identified a need for simplification of language, use of concrete examples of concepts and practice elements to enhance engagement. There were also indications that participants most valued relatability and interactivity within real-world stories with judicious support from an in-app guide. The final prototype comprised a set of interactive and gamified vignettes and a structured set of problem-solving questions to consolidate and generalise learning while encouraging real-world application. Discussion: Findings shaped the design of POD Adventures and its delivery as an open-access blended intervention for secondary school students with a felt need for psychological support, consistent with an early intervention paradigm. A randomised controlled trial is planned to evaluate processes and impacts of POD Adventures when delivered for help-seeking students in low-resource school settings
    corecore