563 research outputs found

    Joint DOA Estimation and Array Calibration Using Multiple Parametric Dictionary Learning

    Full text link
    This letter proposes a multiple parametric dictionary learning algorithm for direction of arrival (DOA) estimation in presence of array gain-phase error and mutual coupling. It jointly solves both the DOA estimation and array imperfection problems to yield a robust DOA estimation in presence of array imperfection errors and off-grid. In the proposed method, a multiple parametric dictionary learning-based algorithm with an steepest-descent iteration is used for learning the parametric perturbation matrices and the steering matrix simultaneously. It also exploits the multiple snapshots information to enhance the performance of DOA estimation. Simulation results show the efficiency of the proposed algorithm when both off-grid problem and array imperfection exist

    Super-Resolution Compressed Sensing: A Generalized Iterative Reweighted L2 Approach

    Full text link
    Conventional compressed sensing theory assumes signals have sparse representations in a known, finite dictionary. Nevertheless, in many practical applications such as direction-of-arrival (DOA) estimation and line spectral estimation, the sparsifying dictionary is usually characterized by a set of unknown parameters in a continuous domain. To apply the conventional compressed sensing technique to such applications, the continuous parameter space has to be discretized to a finite set of grid points, based on which a "presumed dictionary" is constructed for sparse signal recovery. Discretization, however, inevitably incurs errors since the true parameters do not necessarily lie on the discretized grid. This error, also referred to as grid mismatch, may lead to deteriorated recovery performance or even recovery failure. To address this issue, in this paper, we propose a generalized iterative reweighted L2 method which jointly estimates the sparse signals and the unknown parameters associated with the true dictionary. The proposed algorithm is developed by iteratively decreasing a surrogate function majorizing a given objective function, resulting in a gradual and interweaved iterative process to refine the unknown parameters and the sparse signal. A simple yet effective scheme is developed for adaptively updating the regularization parameter that controls the tradeoff between the sparsity of the solution and the data fitting error. Extension of the proposed algorithm to the multiple measurement vector scenario is also considered. Numerical results show that the proposed algorithm achieves a super-resolution accuracy and presents superiority over other existing methods.Comment: arXiv admin note: text overlap with arXiv:1401.431

    From Bayesian Sparsity to Gated Recurrent Nets

    Full text link
    The iterations of many first-order algorithms, when applied to minimizing common regularized regression functions, often resemble neural network layers with pre-specified weights. This observation has prompted the development of learning-based approaches that purport to replace these iterations with enhanced surrogates forged as DNN models from available training data. For example, important NP-hard sparse estimation problems have recently benefitted from this genre of upgrade, with simple feedforward or recurrent networks ousting proximal gradient-based iterations. Analogously, this paper demonstrates that more powerful Bayesian algorithms for promoting sparsity, which rely on complex multi-loop majorization-minimization techniques, mirror the structure of more sophisticated long short-term memory (LSTM) networks, or alternative gated feedback networks previously designed for sequence prediction. As part of this development, we examine the parallels between latent variable trajectories operating across multiple time-scales during optimization, and the activations within deep network structures designed to adaptively model such characteristic sequences. The resulting insights lead to a novel sparse estimation system that, when granted training data, can estimate optimal solutions efficiently in regimes where other algorithms fail, including practical direction-of-arrival (DOA) and 3D geometry recovery problems. The underlying principles we expose are also suggestive of a learning process for a richer class of multi-loop algorithms in other domains

    Super-Resolution Compressed Sensing: An Iterative Reweighted Algorithm for Joint Parameter Learning and Sparse Signal Recovery

    Full text link
    In many practical applications such as direction-of-arrival (DOA) estimation and line spectral estimation, the sparsifying dictionary is usually characterized by a set of unknown parameters in a continuous domain. To apply the conventional compressed sensing to such applications, the continuous parameter space has to be discretized to a finite set of grid points. Discretization, however, incurs errors and leads to deteriorated recovery performance. To address this issue, we propose an iterative reweighted method which jointly estimates the unknown parameters and the sparse signals. Specifically, the proposed algorithm is developed by iteratively decreasing a surrogate function majorizing a given objective function, which results in a gradual and interweaved iterative process to refine the unknown parameters and the sparse signal. Numerical results show that the algorithm provides superior performance in resolving closely-spaced frequency components

    A Block Alternating Optimization Method for Direction-of-Arrival Estimation with Nested Array

    Full text link
    In this paper, direction-of-arrival estimation using nested array is studied in the framework of sparse signal representation. With the vectorization operator, a new real-valued nonnegative sparse signal recovery model which has a wider virtual array aperture is built. To leverage celebrated compressive sensing algorithms, the continuous parameter space has to be discretized to a number of fixed grid points, which inevitably incurs modeling error caused by off-grid gap. To remedy this issue, a block alternating optimization method is put forth that jointly estimates the sparse signal and refines the locations of grid points. Specifically, inspired by the majorization minimization, the proposed method iteratively minimizes a surrogate function majorizing the given objective function, where only a single block of variables are updated per iteration while the remaining ones are kept fixed. The proposed method features affordable computational complexity, and numerical tests corroborate its superior performance relative to existing alternatives in both overdetermined and underdetermined scenarios

    Enhancing Sparsity and Resolution via Reweighted Atomic Norm Minimization

    Full text link
    The mathematical theory of super-resolution developed recently by Cand\`{e}s and Fernandes-Granda states that a continuous, sparse frequency spectrum can be recovered with infinite precision via a (convex) atomic norm technique given a set of uniform time-space samples. This theory was then extended to the cases of partial/compressive samples and/or multiple measurement vectors via atomic norm minimization (ANM), known as off-grid/continuous compressed sensing (CCS). However, a major problem of existing atomic norm methods is that the frequencies can be recovered only if they are sufficiently separated, prohibiting commonly known high resolution. In this paper, a novel (nonconvex) sparse metric is proposed that promotes sparsity to a greater extent than the atomic norm. Using this metric an optimization problem is formulated and a locally convergent iterative algorithm is implemented. The algorithm iteratively carries out ANM with a sound reweighting strategy which enhances sparsity and resolution, and is termed as reweighted atomic-norm minimization (RAM). Extensive numerical simulations are carried out to demonstrate the advantageous performance of RAM with application to direction of arrival (DOA) estimation.Comment: 12 pages, double column, 5 figures, to appear in IEEE Transactions on Signal Processin

    Online unsupervised deep unfolding for massive MIMO channel estimation

    Full text link
    Massive MIMO communication systems have a huge potential both in terms of data rate and energy efficiency, although channel estimation becomes challenging for a large number antennas. Using a physical model allows to ease the problem by injecting a priori information based on the physics of propagation. However, such a model rests on simplifying assumptions and requires to know precisely the configuration of the system, which is unrealistic in practice. In this letter, we propose to perform online learning for channel estimation in a massive MIMO context, adding flexibility to physical channel models by unfolding a channel estimation algorithm (matching pursuit) as a neural network. This leads to a computationally efficient neural network structure that can be trained online when initialized with an imperfect model. The method allows a base station to automatically correct its channel estimation algorithm based on incoming data, without the need for a separate offline training phase. It is applied to realistic millimeter wave channels and shows great performance, achieving a channel estimation error almost as low as one would get with a perfectly calibrated system

    Sparse Bayesian Learning-Based Direction Finding Method With Unknown Mutual Coupling Effect

    Full text link
    The imperfect array degrades the direction finding performance. In this paper, we investigate the direction finding problem in uniform linear array (ULA) system with unknown mutual coupling effect between antennas. By exploiting the target sparsity in the spatial domain, sparse Bayesian learning (SBL)-based model is proposed and converts the direction finding problem into a sparse reconstruction problem. In the sparse-based model, the \emph{off-grid} errors are introduced by discretizing the direction area into grids. Therefore, an off-grid SBL model with mutual coupling vector is proposed to overcome both the mutual coupling and the off-grid effect. With the distribution assumptions of unknown parameters including the noise variance, the off-grid vector, the received signals and the mutual coupling vector, a novel direction finding method based on SBL with unknown mutual coupling effect named DFSMC is proposed, where an expectation-maximum (EM)-based step is adopted by deriving the estimation expressions for all the unknown parameters theoretically. Simulation results show that the proposed DFSMC method can outperform state-of-the-art direction finding methods significantly in the array system with unknown mutual coupling effect

    Sparse Bayesian learning with uncertainty models and multiple dictionaries

    Full text link
    Sparse Bayesian learning (SBL) has emerged as a fast and competitive method to perform sparse processing. The SBL algorithm, which is developed using a Bayesian framework, approximately solves a non-convex optimization problem using fixed point updates. It provides comparable performance and is significantly faster than convex optimization techniques used in sparse processing. We propose a signal model which accounts for dictionary mismatch and the presence of errors in the weight vector at low signal-to-noise ratios. A fixed point update equation is derived which incorporates the statistics of mismatch and weight errors. We also process observations from multiple dictionaries. Noise variances are estimated using stochastic maximum likelihood. The derived update equations are studied quantitatively using beamforming simulations applied to direction-of-arrival (DoA). Performance of SBL using single- and multi-frequency observations, and in the presence of aliasing, is evaluated. SwellEx-96 experimental data demonstrates qualitatively the advantages of SBL.Comment: 11 pages, 8 figure

    Using the LASSO's Dual for Regularization in Sparse Signal Reconstruction from Array Data

    Full text link
    Waves from a sparse set of source hidden in additive noise are observed by a sensor array. We treat the estimation of the sparse set of sources as a generalized complex-valued LASSO problem. The corresponding dual problem is formulated and it is shown that the dual solution is useful for selecting the regularization parameter of the LASSO when the number of sources is given. The solution path of the complex-valued LASSO is analyzed. For a given number of sources, the corresponding regularization parameter is determined by an order-recursive algorithm and two iterative algorithms that are based on a further approximation. Using this regularization parameter, the DOAs of all sources are estimated.Comment: submitted to IEEE Transactions on Signal Processing, 09-Aug-201
    • …
    corecore