2,901 research outputs found

    Belief Propagation Decoding of Polar Codes on Permuted Factor Graphs

    Full text link
    We show that the performance of iterative belief propagation (BP) decoding of polar codes can be enhanced by decoding over different carefully chosen factor graph realizations. With a genie-aided stopping condition, it can achieve the successive cancellation list (SCL) decoding performance which has already been shown to achieve the maximum likelihood (ML) bound provided that the list size is sufficiently large. The proposed decoder is based on different realizations of the polar code factor graph with randomly permuted stages during decoding. Additionally, a different way of visualizing the polar code factor graph is presented, facilitating the analysis of the underlying factor graph and the comparison of different graph permutations. In our proposed decoder, a high rate Cyclic Redundancy Check (CRC) code is concatenated with a polar code and used as an iteration stopping criterion (i.e., genie) to even outperform the SCL decoder of the plain polar code (without the CRC-aid). Although our permuted factor graph-based decoder does not outperform the SCL-CRC decoder, it achieves, to the best of our knowledge, the best performance of all iterative polar decoders presented thus far.Comment: in IEEE Wireless Commun. and Networking Conf. (WCNC), April 201

    Mathematical Programming Decoding of Binary Linear Codes: Theory and Algorithms

    Full text link
    Mathematical programming is a branch of applied mathematics and has recently been used to derive new decoding approaches, challenging established but often heuristic algorithms based on iterative message passing. Concepts from mathematical programming used in the context of decoding include linear, integer, and nonlinear programming, network flows, notions of duality as well as matroid and polyhedral theory. This survey article reviews and categorizes decoding methods based on mathematical programming approaches for binary linear codes over binary-input memoryless symmetric channels.Comment: 17 pages, submitted to the IEEE Transactions on Information Theory. Published July 201

    On a Hybrid Preamble/Soft-Output Demapper Approach for Time Synchronization for IEEE 802.15.6 Narrowband WBAN

    Full text link
    In this paper, we present a maximum likelihood (ML) based time synchronization algorithm for Wireless Body Area Networks (WBAN). The proposed technique takes advantage of soft information retrieved from the soft demapper for the time delay estimation. This algorithm has a low complexity and is adapted to the frame structure specified by the IEEE 802.15.6 standard for the narrowband systems. Simulation results have shown good performance which approach the theoretical mean square error limit bound represented by the Cramer Rao Bound (CRB)

    Research on energy-efficient VLSI decoder for LDPC code

    Get PDF
    制度:新 ; 報告番号:甲3742号 ; 学位の種類:博士(工学) ; 授与年月日:2012/9/15 ; 早大学位記番号:新6113Waseda Universit
    corecore