2,491 research outputs found

    Nonrigid reconstruction of 3D breast surfaces with a low-cost RGBD camera for surgical planning and aesthetic evaluation

    Get PDF
    Accounting for 26% of all new cancer cases worldwide, breast cancer remains the most common form of cancer in women. Although early breast cancer has a favourable long-term prognosis, roughly a third of patients suffer from a suboptimal aesthetic outcome despite breast conserving cancer treatment. Clinical-quality 3D modelling of the breast surface therefore assumes an increasingly important role in advancing treatment planning, prediction and evaluation of breast cosmesis. Yet, existing 3D torso scanners are expensive and either infrastructure-heavy or subject to motion artefacts. In this paper we employ a single consumer-grade RGBD camera with an ICP-based registration approach to jointly align all points from a sequence of depth images non-rigidly. Subtle body deformation due to postural sway and respiration is successfully mitigated leading to a higher geometric accuracy through regularised locally affine transformations. We present results from 6 clinical cases where our method compares well with the gold standard and outperforms a previous approach. We show that our method produces better reconstructions qualitatively by visual assessment and quantitatively by consistently obtaining lower landmark error scores and yielding more accurate breast volume estimates

    Improving ICP with Easy Implementation for Free Form Surface Matching

    Get PDF
    Automatic range image registration and matching is an attractive but unresolved problem in both the machine vision and pattern recognition literature. Since automatic range image registration and matching is inherently a very difficult problem, the algorithms developed are becoming more and more complicated. In this paper, we propose a novel practical algorithm for automatic free-form surface matching. This method directly manipulates the possible point matches established by the traditional ICP criterion based on both the collinearity and closeness constraints without any feature extraction, image pre-processing, or motion estimation from outliers corrupted data. A comparative study based on a large number of real range images has shown the accuracy and robustness of the novel algorithm

    Detail-preserving and Content-aware Variational Multi-view Stereo Reconstruction

    Full text link
    Accurate recovery of 3D geometrical surfaces from calibrated 2D multi-view images is a fundamental yet active research area in computer vision. Despite the steady progress in multi-view stereo reconstruction, most existing methods are still limited in recovering fine-scale details and sharp features while suppressing noises, and may fail in reconstructing regions with few textures. To address these limitations, this paper presents a Detail-preserving and Content-aware Variational (DCV) multi-view stereo method, which reconstructs the 3D surface by alternating between reprojection error minimization and mesh denoising. In reprojection error minimization, we propose a novel inter-image similarity measure, which is effective to preserve fine-scale details of the reconstructed surface and builds a connection between guided image filtering and image registration. In mesh denoising, we propose a content-aware p\ell_{p}-minimization algorithm by adaptively estimating the pp value and regularization parameters based on the current input. It is much more promising in suppressing noise while preserving sharp features than conventional isotropic mesh smoothing. Experimental results on benchmark datasets demonstrate that our DCV method is capable of recovering more surface details, and obtains cleaner and more accurate reconstructions than state-of-the-art methods. In particular, our method achieves the best results among all published methods on the Middlebury dino ring and dino sparse ring datasets in terms of both completeness and accuracy.Comment: 14 pages,16 figures. Submitted to IEEE Transaction on image processin

    On-board real-time pose estimation for UAVs using deformable visual contour registration

    Get PDF
    Presentado al ICRA 2014 celebrado en Hong Kong del 31 de mayo al 7 de junio.We present a real time algorithm for estimating the pose of non-planar objects on which we have placed a visual marker. It is designed to overcome the limitations of small aerial robots, such as slow CPUs, low image resolution and geometric distortions produced by wide angle lenses or viewpoint changes. The method initially registers the shape of a known marker to the contours extracted in an image. For this purpose, and in contrast to state-of-the art, we do not seek to match textured patches or points of interest. Instead, we optimize a geometric alignment cost computed directly from raw polygonal representations of the observed regions using very simple and efficient clipping algorithms. Further speed is achieved by performing the optimization in the polygon representation space, avoiding the need of 2D image processing operations. Deformation modes are easily included in the optimization scheme, allowing an accurate registration of different markers attached to curved surfaces using a single deformable prototype. Once this initial registration is solved, the object pose is retrieved using a standard PnP approach. As a result, the method achieves accurate object pose estimation in real-time, which is very important for interactive UAV tasks, for example for short distance surveillance or bar assembly. We present experiments where our method yields, at about 30Hz, an average error of less than 5mm in estimating the position of a 19×19mm marker placed at 0.7m of the camera.This work has been partially funded by the Spanish Ministry of Economy and Competitiveness under project TaskCoop DPI2010-17112, by the ERANet Chistera project ViSen PCIN-2013-047 and by the EU project ARCAS FP7-ICT-2011-28761. A. Ruiz is supported by FEDER funds under grant TIN2012-38341-C04-03.Peer Reviewe

    Monocular Pose Estimation Based on Global and Local Features

    Get PDF
    The presented thesis work deals with several mathematical and practical aspects of the monocular pose estimation problem. Pose estimation means to estimate the position and orientation of a model object with respect to a camera used as a sensor element. Three main aspects of the pose estimation problem are considered. These are the model representations, correspondence search and pose computation. Free-form contours and surfaces are considered for the approaches presented in this work. The pose estimation problem and the global representation of free-form contours and surfaces are defined in the mathematical framework of the conformal geometric algebra (CGA), which allows a compact and linear modeling of the monocular pose estimation scenario. Additionally, a new local representation of these entities is presented which is also defined in CGA. Furthermore, it allows the extraction of local feature information of these models in 3D space and in the image plane. This local information is combined with the global contour information obtained from the global representations in order to improve the pose estimation algorithms. The main contribution of this work is the introduction of new variants of the iterative closest point (ICP) algorithm based on the combination of local and global features. Sets of compatible model and image features are obtained from the proposed local model representation of free-form contours. This allows to translate the correspondence search problem onto the image plane and to use the feature information to develop new correspondence search criteria. The structural ICP algorithm is defined as a variant of the classical ICP algorithm with additional model and image structural constraints. Initially, this new variant is applied to planar 3D free-form contours. Then, the feature extraction process is adapted to the case of free-form surfaces. This allows to define the correlation ICP algorithm for free-form surfaces. In this case, the minimal Euclidean distance criterion is replaced by a feature correlation measure. The addition of structural information in the search process results in better conditioned correspondences and therefore in a better computed pose. Furthermore, global information (position and orientation) is used in combination with the correlation ICP to simplify and improve the pre-alignment approaches for the monocular pose estimation. Finally, all the presented approaches are combined to handle the pose estimation of surfaces when partial occlusions are present in the image. Experiments made on synthetic and real data are presented to demonstrate the robustness and behavior of the new ICP variants in comparison with standard approaches

    Implicit 3D Orientation Learning for 6D Object Detection from RGB Images

    Get PDF
    We propose a real-time RGB-based pipeline for object detection and 6D pose estimation. Our novel 3D orientation estimation is based on a variant of the Denoising Autoencoder that is trained on simulated views of a 3D model using Domain Randomization. This so-called Augmented Autoencoder has several advantages over existing methods: It does not require real, pose-annotated training data, generalizes to various test sensors and inherently handles object and view symmetries. Instead of learning an explicit mapping from input images to object poses, it provides an implicit representation of object orientations defined by samples in a latent space. Our pipeline achieves state-of-the-art performance on the T-LESS dataset both in the RGB and RGB-D domain. We also evaluate on the LineMOD dataset where we can compete with other synthetically trained approaches. We further increase performance by correcting 3D orientation estimates to account for perspective errors when the object deviates from the image center and show extended results.Comment: Code available at: https://github.com/DLR-RM/AugmentedAutoencode
    corecore