7,595 research outputs found

    Cognitive evaluation of computer-drawn sketches

    Get PDF
    CISRG discussion paper ; 1

    Classification and Verification of Online Handwritten Signatures with Time Causal Information Theory Quantifiers

    Get PDF
    We present a new approach for online handwritten signature classification and verification based on descriptors stemming from Information Theory. The proposal uses the Shannon Entropy, the Statistical Complexity, and the Fisher Information evaluated over the Bandt and Pompe symbolization of the horizontal and vertical coordinates of signatures. These six features are easy and fast to compute, and they are the input to an One-Class Support Vector Machine classifier. The results produced surpass state-of-the-art techniques that employ higher-dimensional feature spaces which often require specialized software and hardware. We assess the consistency of our proposal with respect to the size of the training sample, and we also use it to classify the signatures into meaningful groups.Comment: Submitted to PLOS On

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    Unsupervised Classification of Neolithic Pottery From the Northern Alpine Space Using t-SNE and HDBSCAN

    Get PDF
    Terms of “Neolithic cultures” are still used to describe spatial and temporal differences in pottery styles across central Europe. These terms date back to research periods when absolute dating methods were lacking and typological classification was used to establish chronologies. Those terms are charged with problematic, biasing notions of social configurations: cultural homogeneity, spatial boundedness, and immobility. In this article, we present an alternative approach to pottery classification by using ceramics from dendrochronologically and C14-dated sites of the 40th–38th c. BC located in the northern Alpine Foreland. The newly developed methodology uses a computational unsupervised classification based on profile shape and additional nominal characteristics using t-Distributed Stochastic Neighbour Embedding and Hierarchical Density-Based Spatial Clustering of Applications with Noise for cluster analyses. Its role in our project was to provide a quantitative, algorithm-based approach to classify large datasets of pottery while simultaneously account for a large number of variables. This enabled us to find similarity structures that would escape human cognitive capacities on which typological classification is based on. It formed one pilar of a mixed method research approach combining qualitative and quantitative methods of pottery classification. Our results show that the premises of cultural homogeneity are untenable but can be methodologically overcome by using the proposed classification approaches
    corecore