2,640 research outputs found

    Frontiers in complex dynamics

    Full text link
    Rational maps on the Riemann sphere occupy a distinguished niche in the general theory of smooth dynamical systems. First, rational maps are complex-analytic, so a broad spectrum of techniques can contribute to their study (quasiconformal mappings, potential theory, algebraic geometry, etc.). The rational maps of a given degree form a finite-dimensional manifold, so exploration of this {\em parameter space} is especially tractable. Finally, some of the conjectures once proposed for {\em smooth} dynamical systems (and now known to be false) seem to have a definite chance of holding in the arena of rational maps. In this article we survey a small constellation of such conjectures centering around the density of {\em hyperbolic} rational maps --- those which are dynamically the best behaved. We discuss some of the evidence and logic underlying these conjectures, and sketch recent progress towards their resolution.Comment: 18 pages. Abstract added in migration

    A recursively feasible and convergent Sequential Convex Programming procedure to solve non-convex problems with linear equality constraints

    Get PDF
    A computationally efficient method to solve non-convex programming problems with linear equality constraints is presented. The proposed method is based on a recursively feasible and descending sequential convex programming procedure proven to converge to a locally optimal solution. Assuming that the first convex problem in the sequence is feasible, these properties are obtained by convexifying the non-convex cost and inequality constraints with inner-convex approximations. Additionally, a computationally efficient method is introduced to obtain inner-convex approximations based on Taylor series expansions. These Taylor-based inner-convex approximations provide the overall algorithm with a quadratic rate of convergence. The proposed method is capable of solving problems of practical interest in real-time. This is illustrated with a numerical simulation of an aerial vehicle trajectory optimization problem on commercial-of-the-shelf embedded computers

    Remarks on endomorphisms and rational points

    Full text link
    Let X be a variety over a number field and let f: X --> X be an "interesting" rational self-map with a fixed point q. We make some general remarks concerning the possibility of using the behaviour of f near q to produce many rational points on X. As an application, we give a simplified proof of the potential density of rational points on the variety of lines of a cubic fourfold (originally obtained by Claire Voisin and the first author in 2007).Comment: LaTeX, 22 pages. v2: some minor observations added, misprints corrected, appendix modified
    • …
    corecore