955 research outputs found

    Computation methods for the eigenvalue analysis of large structures by component synthesis

    Get PDF
    Imperial Users onl

    Numerical studies of a magnetohydrodynamic model of a TOKAMAK

    Get PDF
    Imperial Users onl

    Image Deconvolution Under Poisson Noise Using Sparse Representations and Proximal Thresholding Iteration

    Get PDF
    We propose an image deconvolution algorithm when the data is contaminated by Poisson noise. The image to restore is assumed to be sparsely represented in a dictionary of waveforms such as the wavelet or curvelet transform. Our key innovations are: First, we handle the Poisson noise properly by using the Anscombe variance stabilizing transform leading to a non-linear degradation equation with additive Gaussian noise. Second, the deconvolution problem is formulated as the minimization of a convex functional with a data-fidelity term reflecting the noise properties, and a non-smooth sparsity-promoting penalties over the image representation coefficients (e.g. l1-norm). Third, a fast iterative backward-forward splitting algorithm is proposed to solve the minimization problem. We derive existence and uniqueness conditions of the solution, and establish convergence of the iterative algorithm. Experimental results are carried out to show the striking benefits gained from taking into account the Poisson statistics of the noise. These results also suggest that using sparse-domain regularization may be tractable in many deconvolution applications, e.g. astronomy or microscopy

    Author index to volumes 301–400

    Get PDF

    On 3-D inelastic analysis methods for hot section components (base program)

    Get PDF
    A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report

    Geometric Model Order Reduction

    Get PDF
    During the past decade, model order reduction (MOR) has been successfully applied to reduce the computational complexity of elliptic and parabolic systems of partial differential equations (PDEs). However, MOR of hyperbolic equations remains a challenge. Symmetries and conservation laws, which are a distinctive feature of such systems, are often destroyed by conventional MOR techniques, resulting in a perturbed and often unstable reduced system. The goal of this thesis is to study and develop model order reduction techniques that can preserve nonlinear invariants, symmetries, and conservation laws and to understand the stability properties of these methods compared to conventional techniques. Hamiltonian systems, as systems that are driven by symmetries, are studied intensively from the point of view of MOR. Furthermore, a conservative model reduction of fluid flow is presented. It is illustrated that conserving invariants, conservation laws, and symmetries not only result in a physically meaningful reduced system but also result in an accurate and robust reduced system with enhanced stability

    2D H-polarized Auxiliary Basis Functions for the Extension of the Photonic Wannier Function Expansion for Photonic Crystal Circuitry

    Get PDF
    Report on accuracy improvements in the numerical computation of localized defect modes (classical light modes) by expanding the wave equations into Wannier functions. Several sets of auxiliary basis functions are suggested which describe non-continuously differentiable magnetic fields in H-polarization properly. Furthermore, improvements of the numerical Souza-Marzari-Vanderbilt Wannier function generation algorithm based on group theoretical analysis are discussed

    Coherent and squeezed states of quantum Heisenberg algebras

    Full text link
    Starting from deformed quantum Heisenberg Lie algebras some realizations are given in terms of the usual creation and annihilation operators of the standard harmonic oscillator. Then the associated algebra eigenstates are computed and give rise to new classes of deformed coherent and squeezed states. They are parametrized by deformed algebra parameters and suitable redefinitions of them as paragrassmann numbers. Some properties of these deformed states also are analyzed.Comment: 32 pages, 3 figure

    Mean curvature flow of pinched submanifolds of CPn\mathbb{CP}^n

    Full text link
    We consider the evolution by mean curvature flow of a closed submanifold of the complex projective space. We show that, if the submanifold has small codimension and satisfies a suitable pinching condition on the second fundamental form, then the evolution has two possible behaviors: either the submanifold shrinks to a round point in finite time, or it converges smoothly to a totally geodesic limit in infinite time. The latter behavior is only possible if the dimension is even. These results generalize previous works by Huisken and Baker on the mean curvature flow of submanifolds of the sphere.Comment: 39 pages, minor correction
    • …
    corecore