4,205 research outputs found

    Efficient Iterative Processing in the SciDB Parallel Array Engine

    Full text link
    Many scientific data-intensive applications perform iterative computations on array data. There exist multiple engines specialized for array processing. These engines efficiently support various types of operations, but none includes native support for iterative processing. In this paper, we develop a model for iterative array computations and a series of optimizations. We evaluate the benefits of an optimized, native support for iterative array processing on the SciDB engine and real workloads from the astronomy domain

    ClusPath: a temporal-driven clustering to infer typical evolution paths

    Full text link
    © 2015, The Author(s). We propose ClusPath, a novel algorithm for detecting general evolution tendencies in a population of entities. We show how abstract notions, such as the Swedish socio-economical model (in a political dataset) or the companies fiscal optimization (in an economical dataset) can be inferred from low-level descriptive features. Such high-level regularities in the evolution of entities are detected by combining spatial and temporal features into a spatio-temporal dissimilarity measure and using semi-supervised clustering techniques. The relations between the evolution phases are modeled using a graph structure, inferred simultaneously with the partition, by using a “slow changing world” assumption. The idea is to ensure a smooth passage for entities along their evolution paths, which catches the long-term trends in the dataset. Additionally, we also provide a method, based on an evolutionary algorithm, to tune the parameters of ClusPath to new, unseen datasets. This method assesses the fitness of a solution using four opposed quality measures and proposes a balanced compromise

    A Constrained Randomization Approach to Interactive Visual Data Exploration with Subjective Feedback

    Get PDF
    Data visualization and iterative/interactive data mining are growing rapidly in attention, both in research as well as in industry. However, while there are a plethora of advanced data mining methods and lots of works in the field of visualization, integrated methods that combine advanced visualization and/or interaction with data mining techniques in a principled way are rare. We present a framework based on constrained randomization which lets users explore high-dimensional data via 'subjectively informative' two-dimensional data visualizations. The user is presented with 'interesting' projections, allowing users to express their observations using visual interactions that update a background model representing the user's belief state. This background model is then considered by a projection-finding algorithm employing data randomization to compute a new 'interesting' projection. By providing users with information that contrasts with the background model, we maximize the chance that the user encounters striking new information present in the data. This process can be iterated until the user runs out of time or until the difference between the randomized and the real data is insignificant. We present two case studies, one controlled study on synthetic data and another on census data, using the proof-of-concept tool SIDE that demonstrates the presented framework.Peer reviewe
    • …
    corecore