1,008 research outputs found

    Extremal Lipschitz functions in the deviation inequalities from the mean

    Full text link
    We obtain an optimal deviation from the mean upper bound \begin{equation} D(x)\=\sup_{f\in \F}\mu\{f-\E_{\mu} f\geq x\},\qquad\ \text{for}\ x\in\R\label{abstr} \end{equation} where \F is the class of the integrable, Lipschitz functions on probability metric (product) spaces. As corollaries we get exact solutions of \eqref{abstr} for Euclidean unit sphere Snβˆ’1S^{n-1} with a geodesic distance and a normalized Haar measure, for Rn\R^n equipped with a Gaussian measure and for the multidimensional cube, rectangle, torus or Diamond graph equipped with uniform measure and Hamming distance. We also prove that in general probability metric spaces the sup⁑\sup in \eqref{abstr} is achieved on a family of distance functions.Comment: 7 page

    The Number of Triangles Needed to Span a Polygon Embedded in R^d

    Full text link
    Given a closed polygon P having n edges, embedded in R^d, we give upper and lower bounds for the minimal number of triangles t needed to form a triangulated PL surface in R^d having P as its geometric boundary. The most interesting case is dimension 3, where the polygon may be knotted. We use the Seifert suface construction to show there always exists an embedded surface requiring at most 7n^2 triangles. We complement this result by showing there are polygons in R^3 for which any embedded surface requires at least 1/2n^2 - O(n) triangles. In dimension 2 only n-2 triangles are needed, and in dimensions 5 or more there exists an embedded surface requiring at most n triangles. In dimension 4 we obtain a partial answer, with an O(n^2) upper bound for embedded surfaces, and a construction of an immersed disk requiring at most 3n triangles. These results can be interpreted as giving qualitiative discrete analogues of the isoperimetric inequality for piecewise linear manifolds.Comment: 16 pages, 4 figures. This paper is a retitled, revised version of math.GT/020217

    Vertex Isoperimetric Inequalities for a Family of Graphs on Z^k

    Full text link
    We consider the family of graphs whose vertex set is Z^k where two vertices are connected by an edge when their l\infty-distance is 1. We prove the optimal vertex isoperimetric inequality for this family of graphs. That is, given a positive integer n, we find a set A \subset Z^k of size n such that the number of vertices who share an edge with some vertex in A is minimized. These sets of minimal boundary are nested, and the proof uses the technique of compression. We also show a method of calculating the vertex boundary for certain subsets in this family of graphs. This calculation and the isoperimetric inequality allow us to indirectly find the sets which minimize the function calculating the boundary.Comment: 19 pages, 2 figure
    • …
    corecore