274 research outputs found

    Agricultural Production System Based On IOT

    Get PDF
    Internet of things (IoT) is not a single word, but it has gathered billions of devices in the same lane. The Internet of things has given the lives of things. Machines have a sense now like a human. It works remotely as the program has been settled inside the chip. The system has become so smart and reliable. The Internet of things has brought out changes in most of the sectors of humankind. Meanwhile, agriculture is the main strength of a country. The more the production of agricultural products increased, the world will be more completeness from food shortage. The production of agriculture can be increased when the IoT system can be entirely implemented in the agricultural sector. Most of the approaches for IoT based agriculture have been reviewed in this paper. Related to IoT based agriculture, most of the architecture and methodology have been interpreted and have been critically analyzed based on previous related work of the researchers. This paper will be able to provide a complete idea with the architecture and methodology in the field of IoT based agriculture. Moreover, the challenges for agricultural IoT are discussed with the methods provided by the researche

    Application of Wireless Nano Sensors Network and Nanotechnology in Precision Agriculture: Review

    Get PDF
    Due to a series of global issues in recent years, such as the food crisis, the impact of fertilizer on climate change, and improper use of irrigation that’s way precision agriculture is the best solution for alleviating this problem. One of the most important and interesting information technology is the wireless Nanosensor network with the help of Nanotechnology will boost crop productivity, maintain the fertility status of the soil, save the water with precise application of irrigation in the field and minimize the loss of excess fertilizer through the precise application. In this paper, we have surveyed the importance of sensor networks in precision agriculture and the importance of Nanosensors with the help of Nanotechnology for remote monitoring in the various application of the agriculture field. View Article DOI: 10.47856/ijaast.2022.v09i04.00

    Agricultural Production System Based On IOT

    Get PDF
    Internet of things (IoT) is not a single word, but it has gathered billions of devices in the same lane. The Internet of things has given the lives of things. Machines have a sense now like a human. It works remotely as the program has been settled inside the chip. The system has become so smart and reliable. The Internet of things has brought out changes in most of the sectors of humankind. Meanwhile, agriculture is the main strength of a country. The more the production of agricultural products increased, the world will be more completeness from food shortage. The production of agriculture can be increased when the IoT system can be entirely implemented in the agricultural sector. Most of the approaches for IoT based agriculture have been reviewed in this paper. Related to IoT based agriculture, most of the architecture and methodology have been interpreted and have been critically analyzed based on previous related work of the researchers. This paper will be able to provide a complete idea with the architecture and methodology in the field of IoT based agriculture. Moreover, the challenges for agricultural IoT are discussed with the methods provided by the researche

    Context aware Sensor Networks

    Get PDF

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities

    Routing and Mobility on IPv6 over LoWPAN

    Get PDF
    The IoT means a world-wide network of interconnected objects based on standard communication protocols. An object in this context is a quotidian physical device augmented with sensing/actuating, processing, storing and communication capabilities. These objects must be able to interact with the surrounding environment where they are placed and to cooperate with neighbouring objects in order to accomplish a common objective. The IoT objects have also the capabilities of converting the sensed data into automated instructions and communicating them to other objects through the communication networks, avoiding the human intervention in several tasks. Most of IoT deployments are based on small devices with restricted computational resources and energy constraints. For this reason, initially the scientific community did not consider the use of IP protocol suite in this scenarios because there was the perception that it was too heavy to the available resources on such devices. Meanwhile, the scientific community and the industry started to rethink about the use of IP protocol suite in all IoT devices and now it is considered as the solution to provide connectivity between the IoT devices, independently of the Layer 2 protocol in use, and to connect them to the Internet. Despite the use of IP suite protocol in all devices and the amount of solutions proposed, many open issues remain unsolved in order to reach a seamless integration between the IoT and the Internet and to provide the conditions to IoT service widespread. This thesis addressed the challenges associated with the interconnectivity between the Internet and the IoT devices and with the security aspects of the IoT. In the interconnectivity between the IoT devices and the Internet the problem is how to provide valuable information to the Internet connected devices, independently of the supported IP protocol version, without being necessary accessed directly to the IoT nodes. In order to solve this problem, solutions based on Representational state transfer (REST) web services and IPv4 to IPv6 dual stack transition mechanism were proposed and evaluated. The REST web service and the transition mechanism runs only at the border router without penalizing the IoT constrained devices. The mitigation of the effects of internal and external security attacks minimizing the overhead imposed on the IoT devices is the security challenge addressed in this thesis. Three different solutions were proposed. The first is a mechanism to prevent remotely initiated transport level Denial of Service attacks that avoids the use of inefficient and hard to manage traditional firewalls. It is based on filtering at the border router the traffic received from the Internet and destined to the IoT network according to the conditions announced by each IoT device. The second is a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. The third is a network admission control framework that prevents IoT unauthorized nodes to communicate with IoT authorized nodes or with the Internet, which drastically reduces the number of possible security attacks. The network admission control was also exploited as a management mechanism as it can be used to manage the network size in terms of number of nodes, making the network more manageable, increasing its reliability and extending its lifetime.A IoT (Internet of Things) tem suscitado o interesse tanto da comunidade académica como da indústria, uma vez que os campos de aplicação são inúmeros assim como os potenciais ganhos que podem ser obtidos através do uso deste tipo de tecnologia. A IoT significa uma rede global de objetos ligados entre si através de uma rede de comunicações baseada em protocolos standard. Neste contexto, um objeto é um objeto físico do dia a dia ao qual foi adicionada a capacidade de medir e de atuar sobre variáveis físicas, de processar e armazenar dados e de comunicar. Estes objetos têm a capacidade de interagir com o meio ambiente envolvente e de cooperar com outros objetos vizinhos de forma a atingirem um objetivo comum. Estes objetos também têm a capacidade de converter os dados lidos em instruções e de as comunicar a outros objetos através da rede de comunicações, evitando desta forma a intervenção humana em diversas tarefas. A maior parte das concretizações de sistemas IoT são baseados em pequenos dispositivos autónomos com restrições ao nível dos recursos computacionais e de retenção de energia. Por esta razão, inicialmente a comunidade científica não considerou adequado o uso da pilha protocolar IP neste tipo de dispositivos, uma vez que havia a perceção de que era muito pesada para os recursos computacionais disponíveis. Entretanto, a comunidade científica e a indústria retomaram a discussão acerca dos benefícios do uso da pilha protocolar em todos os dispositivos da IoT e atualmente é considerada a solução para estabelecer a conetividade entre os dispositivos IoT independentemente do protocolo da camada dois em uso e para os ligar à Internet. Apesar do uso da pilha protocolar IP em todos os dispositivos e da quantidade de soluções propostas, são vários os problemas por resolver no que concerne à integração contínua e sem interrupções da IoT na Internet e de criar as condições para a adoção generalizada deste tipo de tecnologias. Esta tese versa sobre os desafios associados à integração da IoT na Internet e dos aspetos de segurança da IoT. Relativamente à integração da IoT na Internet o problema é como fornecer informação válida aos dispositivos ligados à Internet, independentemente da versão do protocolo IP em uso, evitando o acesso direto aos dispositivos IoT. Para a resolução deste problema foram propostas e avaliadas soluções baseadas em web services REST e em mecanismos de transição IPv4 para IPv6 do tipo pilha dupla (dual stack). O web service e o mecanismo de transição são suportados apenas no router de fronteira, sem penalizar os dispositivos IoT. No que concerne à segurança, o problema é mitigar os efeitos dos ataques de segurança internos e externos iniciados local e remotamente. Foram propostas três soluções diferentes, a primeira é um mecanismo que minimiza os efeitos dos ataques de negação de serviço com origem na Internet e que evita o uso de mecanismos de firewalls ineficientes e de gestão complexa. Este mecanismo filtra no router de fronteira o tráfego com origem na Internet é destinado à IoT de acordo com as condições anunciadas por cada um dos dispositivos IoT da rede. A segunda solução, é uma framework de network admission control que controla quais os dispositivos que podem aceder à rede com base na autorização administrativa e que aplica políticas de conformidade relativas à segurança aos dispositivos autorizados. A terceira é um mecanismo de network admission control para redes 6LoWPAN que evita que dispositivos não autorizados comuniquem com outros dispositivos legítimos e com a Internet o que reduz drasticamente o número de ataques à segurança. Este mecanismo também foi explorado como um mecanismo de gestão uma vez que pode ser utilizado a dimensão da rede quanto ao número de dispositivos, tornando-a mais fácil de gerir e aumentando a sua fiabilidade e o seu tempo de vida

    An IoT Measurement System Based on LoRaWAN for Additive Manufacturing

    Get PDF
    The Industrial Internet of Things (IIoT) paradigm represents a significant leap forward for sensor networks, potentially enabling wide-area and innovative measurement systems. In this scenario, smart sensors might be equipped with novel low-power and long range communication technologies to realize a so-called low-power wide-area network (LPWAN). One of the most popular representative cases is the LoRaWAN (Long Range WAN) network, where nodes are based on the widespread LoRa physical layer, generally optimized to minimize energy consumption, while guaranteeing long-range coverage and low-cost deployment. Additive manufacturing is a further pillar of the IIoT paradigm, and advanced measurement capabilities may be required to monitor significant parameters during the production of artifacts, as well as to evaluate environmental indicators in the deployment site. To this end, this study addresses some specific LoRa-based smart sensors embedded within artifacts during the early stage of the production phase, as well as their behavior once they have been deployed in the final location. An experimental evaluation was carried out considering two different LoRa end-nodes, namely, the Microchip RN2483 LoRa Mote and the Tinovi PM-IO-5-SM LoRaWAN IO Module. The final goal of this research was to assess the effectiveness of the LoRa-based sensor network design, both in terms of suitability for the aforementioned application and, specifically, in terms of energy consumption and long-range operation capabilities. Energy optimization, battery life prediction, and connectivity range evaluation are key aspects in this application context, since, once the sensors are embedded into artifacts, they will no longer be accessible

    Implementation of a wireless sensor network for agricultural monitoring for Internet of Things (IoT)

    Get PDF
    The agricultural sector is the first industry and the most impacted by the climate changes. The delicate environment that must manage some type of crops require d the constant monitoring and maintenance of the greenhouse. The Internet of Things (IoT) gives a new alternative for real time environmental monitoring of variables such as temperature, humidity and solar irradiation that can contribute for the health y growth of the crop , and also impact for the plagu es and sickness presence . The objective of this thesis is built a Wireless S ensor N etwork using radiofrequency devices and environmental sensor s . The limitation s of this master thesis are: the location of the sensor node , the external conditions that wi ll not impact the network, the simulation, test and pilots that are deployed in a controlled space . The wireless sensor network proposed employ s the Zolertia Motes using IEEE802.15.4 standard . This device allows low power consumption , as the nodes must be located in places where it may handle several week s without change depending on the autonomy of the ir batteries cell . The network protocol manage d works over l ow consumption , as same as the transmitted and received packets of data . T he standard used on this project is the 6LowPAN . T he network co nfigured works over the stack protocol IPv6 so that all the devices handled UDP and manage this internet package. The Raspberry Pi 3 B will work as border router between the sensor nodes and the exterior consider ed as Internet using the IPv4 standard internet router protocol. The framework used for the network implementation is ContikiOS installed on th e gateway and tested using one mote located in the la b . The data manage d in this experiment has low data rate as this measurement do not require a permanent monitoring and high speed . T he atmospherically changes are not variant enough to be observe d constantly . The sample rate will be 1 package each 10 minutes. This project aim s to develop a full network implementa tion since the mote until the dashboard
    corecore