27,887 research outputs found

    The Impact of Global Clustering on Spatial Database Systems

    Get PDF
    Global clustering has rarely been investigated in the area of spatial database systems although dramatic performance improvements can be achieved by using suitable techniques. In this paper, we propose a simple approach to global clustering called cluster organization. We will demonstrate that this cluster organization leads to considerable performance improvements without any algorithmic overhead. Based on real geographic data, we perform a detailed empirical performance evaluation and compare the cluster organization to other organization models not using global clustering. We will show that global clustering speeds up the processing of window queries as well as spatial joins without decreasing the performance of the insertion of new objects and of selective queries such as point queries. The spatial join is sped up by a factor of about 4, whereas non-selective window queries are accelerated by even higher speed up factors

    Multi-Step Processing of Spatial Joins

    Get PDF
    Spatial joins are one of the most important operations for combining spatial objects of several relations. In this paper, spatial join processing is studied in detail for extended spatial objects in twodimensional data space. We present an approach for spatial join processing that is based on three steps. First, a spatial join is performed on the minimum bounding rectangles of the objects returning a set of candidates. Various approaches for accelerating this step of join processing have been examined at the last year’s conference [BKS 93a]. In this paper, we focus on the problem how to compute the answers from the set of candidates which is handled by the following two steps. First of all, sophisticated approximations are used to identify answers as well as to filter out false hits from the set of candidates. For this purpose, we investigate various types of conservative and progressive approximations. In the last step, the exact geometry of the remaining candidates has to be tested against the join predicate. The time required for computing spatial join predicates can essentially be reduced when objects are adequately organized in main memory. In our approach, objects are first decomposed into simple components which are exclusively organized by a main-memory resident spatial data structure. Overall, we present a complete approach of spatial join processing on complex spatial objects. The performance of the individual steps of our approach is evaluated with data sets from real cartographic applications. The results show that our approach reduces the total execution time of the spatial join by factors

    Efficient Processing of Spatial Joins Using R-Trees

    Get PDF
    Abstract: In this paper, we show that spatial joins are very suitable to be processed on a parallel hardware platform. The parallel system is equipped with a so-called shared virtual memory which is well-suited for the design and implementation of parallel spatial join algorithms. We start with an algorithm that consists of three phases: task creation, task assignment and parallel task execu-tion. In order to reduce CPU- and I/O-cost, the three phases are processed in a fashion that pre-serves spatial locality. Dynamic load balancing is achieved by splitting tasks into smaller ones and reassigning some of the smaller tasks to idle processors. In an experimental performance compar-ison, we identify the advantages and disadvantages of several variants of our algorithm. The most efficient one shows an almost optimal speed-up under the assumption that the number of disks is sufficiently large. Topics: spatial database systems, parallel database systems

    Importance of the Inverted Control in Measuring Holistic Face Processing with the Composite Effect and Part-Whole Effect

    Get PDF
    Holistic coding for faces is shown in several illusions that demonstrate integration of the percept across the entire face. The illusions occur upright but, crucially, not inverted. Converting the illusions into experimental tasks that measure their strength - and thus index degree of holistic coding - is often considered straightforward yet in fact relies on a hidden assumption, namely that there is no contribution to the experimental measure from secondary cognitive factors. For the composite effect, a relevant secondary factor is size of the "spotlight" of visuospatial attention. The composite task assumes this spotlight can be easily restricted to the target half (e.g., top-half) of the compound face stimulus. Yet, if this assumption were not true then a large spotlight, in the absence of holistic perception, could produce a false composite effect, present even for inverted faces and contributing partially to the score for upright faces. We review evidence that various factors can influence spotlight size: race/culture (Asians often prefer a more global distribution of attention than Caucasians); sex (females can be more global); appearance of the join or gap between face halves; and location of the eyes, which typically attract attention. Results from five experiments then show inverted faces can sometimes produce large false composite effects, and imply that whether this happens or not depends on complex interactions between causal factors. We also report, for both identity and expression, that only top-half face targets (containing eyes) produce valid composite measures. A sixth experiment demonstrates an example of a false inverted part-whole effect, where encoding-specificity is the secondary cognitive factor. We conclude the inverted face control should be tested in all composite and part-whole studies, and an effect for upright faces should be interpreted as a pure measure of holistic processing only when the experimental design produces no effect inverted.Australian Research Council DP0984558 to Elinor McKone; Australian Research Council Centre of Excellence in Cognition and its Disorders (project number CE110001021); Kate Crookes salary supported by Hong Kong Research Grants Council grant (HKU744911) to William Hayward

    A Multiscale Investigation of Habitat Use and Within-river Distribution of Sympatric Sand Darter Species

    Get PDF
    The western sand darter Ammocrypta clara, and eastern sand darter Ammocrypta pellucida are sand-dwelling fishes of conservation concern. Past research has emphasized the importance of studying individual populations of conservation concern, while recent research has revealed the importance of incorporating landscape scale processes that structure habitat mosaics and local populations. We examined habitat use and distributions of western and eastern sand darters in the lower Elk River of West Virginia. At the sandbar habitat use scale, western sand darters were detected in sandbars with greater area, higher proportions of coarse grain sand and faster bottom current velocity, while the eastern sand darter used a wider range of sandbar habitats. The landscape scale analysis revealed that contributing drainage area was an important predictor for both species, while sinuosity, which presumably represents valley type also contributed to the western sand darter’s habitat suitability. Sandbar quality (area, grain size, and velocity) and fluvial geomorphic variables (drainage area and valley type) are likely key driving factors structuring sand darter distributions in the Elk River. This multiscale study of within-river species distribution and habitat use is unique, given that only a few sympatric populations are known of western and eastern sand darters

    Planning reform, land release and the supply of housing

    Get PDF
    There is a growing interest in academic and policy circles in the relationship between land use planning policy and housing supply. Housing researchers are interested in the extent to which planning policies and practises may be exacerbating housing affordability questions, while planning academics and practitioners focus on what effect their policies actually have on the characteristics of housing supply. Policies seeking a diversity of built form are underpinned by attempts to reduce energy consumption through smaller house sizes and the design of less car dependent suburbs. Urban Growth Boundaries (UGBs) and increased net housing densities seek to slow the expansion of cities into hinterlands and reduce travel costs. The impact of UGBs on house prices is one of a number of issues that remains contested (Nelson et al 2007; Buxton and Scheurer 2007)

    A Balancing-Process Approach to Firm Internationalization

    Get PDF
    Drawing on the resource-based view of the firm, this paper develops a balancing-process approach to explain the motivations and location choices of foreign direct investment (FDI). In this approach, FDI is viewed as a means to balance a firm's portfolio of resources and capabilities through utilizing foreign strategic factor markets with the ultimate goal of achieving growth and sustainable competitive advantage. This approach joins exploitative and explorative FDI in a single framework and helps explain why a firm can conduct both types of FDI simultaneously.
    • 

    corecore