488 research outputs found

    An Unsolicited Soliloquy on Dependency Parsing

    Get PDF
    Programa Oficial de Doutoramento en Computación . 5009V01[Abstract] This thesis presents work on dependency parsing covering two distinct lines of research. The first aims to develop efficient parsers so that they can be fast enough to parse large amounts of data while still maintaining decent accuracy. We investigate two techniques to achieve this. The first is a cognitively-inspired method and the second uses a model distillation method. The first technique proved to be utterly dismal, while the second was somewhat of a success. The second line of research presented in this thesis evaluates parsers. This is also done in two ways. We aim to evaluate what causes variation in parsing performance for different algorithms and also different treebanks. This evaluation is grounded in dependency displacements (the directed distance between a dependent and its head) and the subsequent distributions associated with algorithms and the distributions found in treebanks. This work sheds some light on the variation in performance for both different algorithms and different treebanks. And the second part of this area focuses on the utility of part-of-speech tags when used with parsing systems and questions the standard position of assuming that they might help but they certainly won’t hurt.[Resumen] Esta tesis presenta trabajo sobre análisis de dependencias que cubre dos líneas de investigación distintas. La primera tiene como objetivo desarrollar analizadores eficientes, de modo que sean suficientemente rápidos como para analizar grandes volúmenes de datos y, al mismo tiempo, sean suficientemente precisos. Investigamos dos métodos. El primero se basa en teorías cognitivas y el segundo usa una técnica de destilación. La primera técnica resultó un enorme fracaso, mientras que la segunda fue en cierto modo un ´éxito. La otra línea evalúa los analizadores sintácticos. Esto también se hace de dos maneras. Evaluamos la causa de la variación en el rendimiento de los analizadores para distintos algoritmos y corpus. Esta evaluación utiliza la diferencia entre las distribuciones del desplazamiento de arista (la distancia dirigida de las aristas) correspondientes a cada algoritmo y corpus. También evalúa la diferencia entre las distribuciones del desplazamiento de arista en los datos de entrenamiento y prueba. Este trabajo esclarece las variaciones en el rendimiento para algoritmos y corpus diferentes. La segunda parte de esta línea investiga la utilidad de las etiquetas gramaticales para los analizadores sintácticos.[Resumo] Esta tese presenta traballo sobre análise sintáctica, cubrindo dúas liñas de investigación. A primeira aspira a desenvolver analizadores eficientes, de maneira que sexan suficientemente rápidos para procesar grandes volumes de datos e á vez sexan precisos. Investigamos dous métodos. O primeiro baséase nunha teoría cognitiva, e o segundo usa unha técnica de destilación. O primeiro método foi un enorme fracaso, mentres que o segundo foi en certo modo un éxito. A outra liña avalúa os analizadores sintácticos. Esto tamén se fai de dúas maneiras. Avaliamos a causa da variación no rendemento dos analizadores para distintos algoritmos e corpus. Esta avaliaci´on usa a diferencia entre as distribucións do desprazamento de arista (a distancia dirixida das aristas) correspondentes aos algoritmos e aos corpus. Tamén avalía a diferencia entre as distribucións do desprazamento de arista nos datos de adestramento e proba. Este traballo esclarece as variacións no rendemento para algoritmos e corpus diferentes. A segunda parte desta liña investiga a utilidade das etiquetas gramaticais para os analizadores sintácticos.This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (FASTPARSE, grant agreement No 714150) and from the Centro de Investigación de Galicia (CITIC) which is funded by the Xunta de Galicia and the European Union (ERDF - Galicia 2014-2020 Program) by grant ED431G 2019/01.Xunta de Galicia; ED431G 2019/0

    Neural approaches to sequence labeling for information extraction

    Get PDF
    Een belangrijk aspect binnen artificiële intelligentie (AI) is het interpreteren van menselijke taal uitgedrukt in tekstuele (geschreven) vorm: natural Language processing (NLP) is belangrijk gezien tekstuele informatie nuttig is voor veel toepassingen. Toch is het verstaan ervan (zogenaamde natural Language understanding, (NLU) een uitdaging, gezien de ongestructureerde vorm van tekst, waarvan de betekenis vaak dubbelzinnig en contextafhankelijk is. In dit proefschrift introduceren we oplossingen voor tekortkomingen van gerelateerd werk bij het behandelen van fundamentele taken in natuurlijke taalverwerking, zoals named entity recognition (i.e. het identificeren van de entiteiten die in een zin voorkomen) en relatie-extractie (het identificeren van relaties tussen entiteiten). Vertrekkend van een specifiek probleem (met name het identificeren van de structuur van een huis aan de hand van een tekstueel zoekertje), bouwen we stapsgewijs een complete (geautomatiseerde) oplossing voor de bovengenoemde taken, op basis van neutrale netwerkarchitecturen. Onze oplossingen zijn algemeen toepasbaar op verschillende toepassingsdomeinen en talen. We beschouwen daarnaast ook de taak van het identificeren van relevante gebeurtenissen tijdens een evenement (bv. een doelpunt tijdens een voetbalwedstrijd), in informatiestromen op Twitter. Meer bepaald formuleren we dit probleem als het labelen van woord sequenties (vergelijkbaar met named entity recognition), waarbij we de chronologische relatie tussen opeenvolgende tweets benutten

    Optimizing text mining methods for improving biomedical natural language processing

    Get PDF
    The overwhelming amount and the increasing rate of publication in the biomedical domain make it difficult for life sciences researchers to acquire and maintain all information that is necessary for their research. Pubmed (the primary citation database for the biomedical literature) currently contains over 21 million article abstracts and more than one million of them were published in 2020 alone. Even though existing article databases provide capable keyword search services, typical everyday-life queries usually return thousands of relevant articles. For instance, a cancer research scientist may need to acquire a complete list of genes that interact with BRCA1 (breast cancer 1) gene. The PubMed keyword search for BRCA1 returns over 16,500 article abstracts, making manual inspection of the retrieved documents impractical. Missing even one of the interacting gene partners in this scenario may jeopardize successful development of a potential new drug or vaccine. Although manually curated databases of biomolecular interactions exist, they are usually not up-to-date and they require notable human effort to maintain. To summarize, new discoveries are constantly being shared within the community via scientific publishing, but unfortunately the probability of missing vital information for research in life sciences is increasing. In response to this problem, the biomedical natural language processing (BioNLP) community of researchers has emerged and strives to assist life sciences researchers by building modern language processing and text mining tools that can be applied at large-scale and scan the whole publicly available literature and extract, classify, and aggregate the information found within, thus keeping life sciences researchers always up-to-date with the recent relevant discoveries and facilitating their research in numerous fields such as molecular biology, biomedical engineering, bioinformatics, genetics engineering and biochemistry. My research has almost exclusively focused on biomedical relation and event extraction tasks. These foundational information extraction tasks deal with automatic detection of biological processes, interactions and relations described in the biomedical literature. Precisely speaking, biomedical relation and event extraction systems can scan through a vast amount of biomedical texts and automatically detect and extract the semantic relations of biomedical named entities (e.g. genes, proteins, chemical compounds, and diseases). The structured outputs of such systems (i.e., the extracted relations or events) can be stored as relational databases or molecular interaction networks which can easily be queried, filtered, analyzed, visualized and integrated with other structured data sources. Extracting biomolecular interactions has always been the primary interest of BioNLP researcher because having knowledge about such interactions is crucially important in various research areas including precision medicine, drug discovery, drug repurposing, hypothesis generation, construction and curation of signaling pathways, and protein function and structure prediction. State-of-the-art relation and event extraction methods are based on supervised machine learning, requiring manually annotated data for training. Manual annotation for the biomedical domain requires domain expertise and it is time-consuming. Hence, having minimal training data for building information extraction systems is a common case in the biomedical domain. This demands development of methods that can make the most out of available training data and this thesis gathers all my research efforts and contributions in that direction. It is worth mentioning that biomedical natural language processing has undergone a revolution since I started my research in this field almost ten years ago. As a member of the BioNLP community, I have witnessed the emergence, improvement– and in some cases, the disappearance–of many methods, each pushing the performance of the best previous method one step further. I can broadly divide the last ten years into three periods. Once I started my research, feature-based methods that relied on heavy feature engineering were dominant and popular. Then, significant advancements in the hardware technology, as well as several breakthroughs in the algorithms and methods enabled machine learning practitioners to seriously utilize artificial neural networks for real-world applications. In this period, convolutional, recurrent, and attention-based neural network models became dominant and superior. Finally, the introduction of transformer-based language representation models such as BERT and GPT impacted the field and resulted in unprecedented performance improvements on many data sets. When reading this thesis, I demand the reader to take into account the course of history and judge the methods and results based on what could have been done in that particular period of the history

    One Model to Rule them all: Multitask and Multilingual Modelling for Lexical Analysis

    Get PDF
    When learning a new skill, you take advantage of your preexisting skills and knowledge. For instance, if you are a skilled violinist, you will likely have an easier time learning to play cello. Similarly, when learning a new language you take advantage of the languages you already speak. For instance, if your native language is Norwegian and you decide to learn Dutch, the lexical overlap between these two languages will likely benefit your rate of language acquisition. This thesis deals with the intersection of learning multiple tasks and learning multiple languages in the context of Natural Language Processing (NLP), which can be defined as the study of computational processing of human language. Although these two types of learning may seem different on the surface, we will see that they share many similarities. The traditional approach in NLP is to consider a single task for a single language at a time. However, recent advances allow for broadening this approach, by considering data for multiple tasks and languages simultaneously. This is an important approach to explore further as the key to improving the reliability of NLP, especially for low-resource languages, is to take advantage of all relevant data whenever possible. In doing so, the hope is that in the long term, low-resource languages can benefit from the advances made in NLP which are currently to a large extent reserved for high-resource languages. This, in turn, may then have positive consequences for, e.g., language preservation, as speakers of minority languages will have a lower degree of pressure to using high-resource languages. In the short term, answering the specific research questions posed should be of use to NLP researchers working towards the same goal.Comment: PhD thesis, University of Groninge

    Linguistically-Informed Neural Architectures for Lexical, Syntactic and Semantic Tasks in Sanskrit

    Full text link
    The primary focus of this thesis is to make Sanskrit manuscripts more accessible to the end-users through natural language technologies. The morphological richness, compounding, free word orderliness, and low-resource nature of Sanskrit pose significant challenges for developing deep learning solutions. We identify four fundamental tasks, which are crucial for developing a robust NLP technology for Sanskrit: word segmentation, dependency parsing, compound type identification, and poetry analysis. The first task, Sanskrit Word Segmentation (SWS), is a fundamental text processing task for any other downstream applications. However, it is challenging due to the sandhi phenomenon that modifies characters at word boundaries. Similarly, the existing dependency parsing approaches struggle with morphologically rich and low-resource languages like Sanskrit. Compound type identification is also challenging for Sanskrit due to the context-sensitive semantic relation between components. All these challenges result in sub-optimal performance in NLP applications like question answering and machine translation. Finally, Sanskrit poetry has not been extensively studied in computational linguistics. While addressing these challenges, this thesis makes various contributions: (1) The thesis proposes linguistically-informed neural architectures for these tasks. (2) We showcase the interpretability and multilingual extension of the proposed systems. (3) Our proposed systems report state-of-the-art performance. (4) Finally, we present a neural toolkit named SanskritShala, a web-based application that provides real-time analysis of input for various NLP tasks. Overall, this thesis contributes to making Sanskrit manuscripts more accessible by developing robust NLP technology and releasing various resources, datasets, and web-based toolkit.Comment: Ph.D. dissertatio

    On the Use of Parsing for Named Entity Recognition

    Get PDF
    [Abstract] Parsing is a core natural language processing technique that can be used to obtain the structure underlying sentences in human languages. Named entity recognition (NER) is the task of identifying the entities that appear in a text. NER is a challenging natural language processing task that is essential to extract knowledge from texts in multiple domains, ranging from financial to medical. It is intuitive that the structure of a text can be helpful to determine whether or not a certain portion of it is an entity and if so, to establish its concrete limits. However, parsing has been a relatively little-used technique in NER systems, since most of them have chosen to consider shallow approaches to deal with text. In this work, we study the characteristics of NER, a task that is far from being solved despite its long history; we analyze the latest advances in parsing that make its use advisable in NER settings; we review the different approaches to NER that make use of syntactic information; and we propose a new way of using parsing in NER based on casting parsing itself as a sequence labeling task.Xunta de Galicia; ED431C 2020/11Xunta de Galicia; ED431G 2019/01This work has been funded by MINECO, AEI and FEDER of UE through the ANSWER-ASAP project (TIN2017-85160-C2-1-R); and by Xunta de Galicia through a Competitive Reference Group grant (ED431C 2020/11). CITIC, as Research Center of the Galician University System, is funded by the Consellería de Educación, Universidade e Formación Profesional of the Xunta de Galicia through the European Regional Development Fund (ERDF/FEDER) with 80%, the Galicia ERDF 2014-20 Operational Programme, and the remaining 20% from the Secretaría Xeral de Universidades (Ref. ED431G 2019/01). Carlos Gómez-Rodríguez has also received funding from the European Research Council (ERC), under the European Union’s Horizon 2020 research and innovation programme (FASTPARSE, Grant No. 714150)

    Modeling Language Variation and Universals: A Survey on Typological Linguistics for Natural Language Processing

    Get PDF
    Linguistic typology aims to capture structural and semantic variation across the world's languages. A large-scale typology could provide excellent guidance for multilingual Natural Language Processing (NLP), particularly for languages that suffer from the lack of human labeled resources. We present an extensive literature survey on the use of typological information in the development of NLP techniques. Our survey demonstrates that to date, the use of information in existing typological databases has resulted in consistent but modest improvements in system performance. We show that this is due to both intrinsic limitations of databases (in terms of coverage and feature granularity) and under-employment of the typological features included in them. We advocate for a new approach that adapts the broad and discrete nature of typological categories to the contextual and continuous nature of machine learning algorithms used in contemporary NLP. In particular, we suggest that such approach could be facilitated by recent developments in data-driven induction of typological knowledge
    • …
    corecore