218,159 research outputs found

    Study of Tools Interoperability

    Get PDF
    Interoperability of tools usually refers to a combination of methods and techniques that address the problem of making a collection of tools to work together. In this study we survey different notions that are used in this context: interoperability, interaction and integration. We point out relation between these notions, and how it maps to the interoperability problem. We narrow the problem area to the tools development in academia. Tools developed in such environment have a small basis for development, documentation and maintenance. We scrutinise some of the problems and potential solutions related with tools interoperability in such environment. Moreover, we look at two tools developed in the Formal Methods and Tools group1, and analyse the use of different integration techniques

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power

    Numerical Simulation of Heat Transport in Dispersed Gas-Liquid Two-Phase Flow using a Front Tracking Approach

    Get PDF
    In this paper a simulation model is presented for the Direct Numerical Simulation (DNS) of heat transport in dispersed gas-liquid two-phase flow using the Front Tracking (FT) approach. Our model extends the FT model developed by van Sint Annaland et al. (2006) to non-isothermal conditions. In FT an unstructured dynamic mesh is used to represent and track the interface explicitly by a number of interconnected marker points. The Lagrangian representation of the interface avoids the necessity to reconstruct the interface from the local distribution of the fractions of the phases and, moreover, allows a direct and accurate calculation of the surface tension force circumventing the (problematic) computation of the interface curvature. The extended model is applied to predict the heat exchange rate between the liquid and a hot wall kept at a fixed temperature. It is found that the wall-to-liquid heat transfer coefficient exhibits a maximum in the vicinity of the bubble that can be attributed to the locally decreased thickness of the thermal boundary layer

    Direct numerical simulation of heat transport in dispersed gas-liquid two-phase flow using a front tracking approach

    Get PDF
    In this paper a simulation model is presented for the Direct Numerical Simulation (DNS) of heat transport in dispersed gas-liquid two-phase flow using the Front Tracking (FT) approach. Our model extends the FT model developed by van Sint Annaland et al. (2006) to non-isothermal conditions. In FT an unstructured dynamic mesh is used to represent and track the interface explicitly by a number of interconnected marker points. The Lagrangian representation of the interface avoids the necessity to reconstruct the interface from the local distribution of the fractions of the phases and, moreover, allows a direct and accurate calculation of the surface tension force circumventing the (problematic) computation of the interface curvature. The extended model is applied to predict the heat exchange rate between the liquid and a hot wall kept at a fixed temperature. It is found that the wall-to-liquid heat transfer coefficient exhibits a maximum in the vicinity of the bubble that can be attributed to the locally decreased thickness of the thermal boundary layer

    Visualisation of semantic architectural information within a game engine environment

    Get PDF
    Because of the importance of graphics and information within the domain of architecture, engineering and construction (AEC), an appropriate combination of visualisation technology and information management technology is of utter importance in the development of appropriately supporting design and construction applications. We therefore started an investigation of two of the newest developments in these domains, namely game engine technology and semantic web technology. This paper documents part of this research, containing a review and comparison of the most prominent game engines and documenting our architectural semantic web. A short test-case illustrates how both can be combined to enhance information visualisation for architectural design and construction

    Constructing a Virtual Training Laboratory Using Intelligent Agents

    No full text
    This paper reports on the results and experiences of the Trilogy project; a collaborative project concerned with the development of a virtual research laboratory using intelligence agents. This laboratory is designed to support the training of research students in telecommunications traffic engineering. Training research students involves a number of basic activities. They may seek guidance from, or exchange ideas with, more experienced colleagues. High quality academic papers, books and research reports provide a sound basis for developing and maintaining a good understanding of an area of research. Experimental tools enable new ideas to be evaluated, and hypotheses tested. These three components-collaboration, information and experimentation- are central to any research activity, and a good training environment for research should integrate them in a seamless fashion. To this end, we describe the design and implementation of an agent-based virtual laboratory

    Fidelity metrics for virtual environment simulations based on spatial memory awareness states

    Get PDF
    This paper describes a methodology based on human judgments of memory awareness states for assessing the simulation fidelity of a virtual environment (VE) in relation to its real scene counterpart. To demonstrate the distinction between task performance-based approaches and additional human evaluation of cognitive awareness states, a photorealistic VE was created. Resulting scenes displayed on a headmounted display (HMD) with or without head tracking and desktop monitor were then compared to the real-world task situation they represented, investigating spatial memory after exposure. Participants described how they completed their spatial recollections by selecting one of four choices of awareness states after retrieval in an initial test and a retention test a week after exposure to the environment. These reflected the level of visual mental imagery involved during retrieval, the familiarity of the recollection and also included guesses, even if informed. Experimental results revealed variations in the distribution of participants’ awareness states across conditions while, in certain cases, task performance failed to reveal any. Experimental conditions that incorporated head tracking were not associated with visually induced recollections. Generally, simulation of task performance does not necessarily lead to simulation of the awareness states involved when completing a memory task. The general premise of this research focuses on how tasks are achieved, rather than only on what is achieved. The extent to which judgments of human memory recall, memory awareness states, and presence in the physical and VE are similar provides a fidelity metric of the simulation in question

    A State-of-the-art Integrated Transportation Simulation Platform

    Full text link
    Nowadays, universities and companies have a huge need for simulation and modelling methodologies. In the particular case of traffic and transportation, making physical modifications to the real traffic networks could be highly expensive, dependent on political decisions and could be highly disruptive to the environment. However, while studying a specific domain or problem, analysing a problem through simulation may not be trivial and may need several simulation tools, hence raising interoperability issues. To overcome these problems, we propose an agent-directed transportation simulation platform, through the cloud, by means of services. We intend to use the IEEE standard HLA (High Level Architecture) for simulators interoperability and agents for controlling and coordination. Our motivations are to allow multiresolution analysis of complex domains, to allow experts to collaborate on the analysis of a common problem and to allow co-simulation and synergy of different application domains. This paper will start by presenting some preliminary background concepts to help better understand the scope of this work. After that, the results of a literature review is shown. Finally, the general architecture of a transportation simulation platform is proposed
    corecore