305 research outputs found

    Guiding CTC Posterior Spike Timings for Improved Posterior Fusion and Knowledge Distillation

    Full text link
    Conventional automatic speech recognition (ASR) systems trained from frame-level alignments can easily leverage posterior fusion to improve ASR accuracy and build a better single model with knowledge distillation. End-to-end ASR systems trained using the Connectionist Temporal Classification (CTC) loss do not require frame-level alignment and hence simplify model training. However, sparse and arbitrary posterior spike timings from CTC models pose a new set of challenges in posterior fusion from multiple models and knowledge distillation between CTC models. We propose a method to train a CTC model so that its spike timings are guided to align with those of a pre-trained guiding CTC model. As a result, all models that share the same guiding model have aligned spike timings. We show the advantage of our method in various scenarios including posterior fusion of CTC models and knowledge distillation between CTC models with different architectures. With the 300-hour Switchboard training data, the single word CTC model distilled from multiple models improved the word error rates to 13.7%/23.1% from 14.9%/24.1% on the Hub5 2000 Switchboard/CallHome test sets without using any data augmentation, language model, or complex decoder.Comment: Accepted to Interspeech 201

    Improved training for online end-to-end speech recognition systems

    Full text link
    Achieving high accuracy with end-to-end speech recognizers requires careful parameter initialization prior to training. Otherwise, the networks may fail to find a good local optimum. This is particularly true for online networks, such as unidirectional LSTMs. Currently, the best strategy to train such systems is to bootstrap the training from a tied-triphone system. However, this is time consuming, and more importantly, is impossible for languages without a high-quality pronunciation lexicon. In this work, we propose an initialization strategy that uses teacher-student learning to transfer knowledge from a large, well-trained, offline end-to-end speech recognition model to an online end-to-end model, eliminating the need for a lexicon or any other linguistic resources. We also explore curriculum learning and label smoothing and show how they can be combined with the proposed teacher-student learning for further improvements. We evaluate our methods on a Microsoft Cortana personal assistant task and show that the proposed method results in a 19 % relative improvement in word error rate compared to a randomly-initialized baseline system.Comment: Interspeech 201

    Mutual-learning sequence-level knowledge distillation for automatic speech recognition

    Get PDF
    Automatic speech recognition (ASR) is a crucial technology for man-machine interaction. End-to-end models have been studied recently in deep learning for ASR. However, these models are not suitable for the practical application of ASR due to their large model sizes and computation costs. To address this issue, we propose a novel mutual-learning sequence-level knowledge distillation framework enjoying distinct student structures for ASR. Trained mutually and simultaneously, each student learns not only from the pre-trained teacher but also from its distinct peers, which can improve the generalization capability of the whole network, through making up for the insufficiency of each student and bridging the gap between each student and the teacher. Extensive experiments on the TIMIT and large LibriSpeech corpuses show that, compared with the state-of-the-art methods, the proposed method achieves an excellent balance between recognition accuracy and model compression

    ASR is all you need: cross-modal distillation for lip reading

    Full text link
    The goal of this work is to train strong models for visual speech recognition without requiring human annotated ground truth data. We achieve this by distilling from an Automatic Speech Recognition (ASR) model that has been trained on a large-scale audio-only corpus. We use a cross-modal distillation method that combines Connectionist Temporal Classification (CTC) with a frame-wise cross-entropy loss. Our contributions are fourfold: (i) we show that ground truth transcriptions are not necessary to train a lip reading system; (ii) we show how arbitrary amounts of unlabelled video data can be leveraged to improve performance; (iii) we demonstrate that distillation significantly speeds up training; and, (iv) we obtain state-of-the-art results on the challenging LRS2 and LRS3 datasets for training only on publicly available data.Comment: ICASSP 202

    EM-Network: Oracle Guided Self-distillation for Sequence Learning

    Full text link
    We introduce EM-Network, a novel self-distillation approach that effectively leverages target information for supervised sequence-to-sequence (seq2seq) learning. In contrast to conventional methods, it is trained with oracle guidance, which is derived from the target sequence. Since the oracle guidance compactly represents the target-side context that can assist the sequence model in solving the task, the EM-Network achieves a better prediction compared to using only the source input. To allow the sequence model to inherit the promising capability of the EM-Network, we propose a new self-distillation strategy, where the original sequence model can benefit from the knowledge of the EM-Network in a one-stage manner. We conduct comprehensive experiments on two types of seq2seq models: connectionist temporal classification (CTC) for speech recognition and attention-based encoder-decoder (AED) for machine translation. Experimental results demonstrate that the EM-Network significantly advances the current state-of-the-art approaches, improving over the best prior work on speech recognition and establishing state-of-the-art performance on WMT'14 and IWSLT'14.Comment: ICML 202
    • …
    corecore