5,491 research outputs found

    Arterial Spin Labeling Perfusion of the Brain: Emerging Clinical Applications

    Get PDF
    Arterial spin labeling (ASL) is a magnetic resonance (MR) imaging technique used to assess cerebral blood flow noninvasively by magnetically labeling inflowing blood. In this article, the main labeling techniques, notably pulsed and pseudocontinuous ASL, as well as emerging clinical applications will be reviewed. In dementia, the pattern of hypoperfusion on ASL images closely matches the established patterns of hypometabolism on fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) images due to the close coupling of perfusion and metabolism in the brain. This suggests that ASL might be considered as an alternative for FDG, reserving PET to be used for the molecular disease-specific amyloid and tau tracers. In stroke, ASL can be used to assess perfusion alterations both in the acute and the chronic phase. In arteriovenous malformations and dural arteriovenous fistulas, ASL is very sensitive to detect even small degrees of shunting. In epilepsy, ASL can be used to assess the epileptogenic focus, both in peri- and interictal period. In neoplasms, ASL is of particular interest in cases in which gadolinium-based perfusion is contraindicated (eg, allergy, renal impairment) and holds promise in differentiating tumor progression from benign causes of enhancement. Finally, various neurologic and psychiatric diseases including mild traumatic brain injury or posttraumatic stress disorder display alterations on ASL images in the absence of visualized structural changes. In the final part, current limitations and future developments of ASL techniques to improve clinical applicability, such as multiple inversion time ASL sequences to assess alterations of transit time, reproducibility and quantification of cerebral blood flow, and to measure cerebrovascular reserve, will be reviewed

    CALIBRATED SHORT TR RECOVERY MRI FOR RAPID MEASUREMENT OF BRAIN-BLOOD PARTITION COEFFICIENT AND CORRECTION OF QUANTITATIVE CEREBRAL BLOOD FLOW

    Get PDF
    The high prevalence and mortality of cerebrovascular disease has led to the development of several methods to measure cerebral blood flow (CBF) in vivo. One of these, arterial spin labeling (ASL), is a quantitative magnetic resonance imaging (MRI) technique with the advantage that it is completely non-invasive. The quantification of CBF using ASL requires correction for a tissue specific parameter called the brain-blood partition coefficient (BBPC). Despite regional and inter-subject variability in BBPC, the current recommended implementation of ASL uses a constant assumed value of 0.9 mL/g for all regions of the brain, all subjects, and even all species. The purpose of this dissertation is 1) to apply ASL to a novel population to answer an important clinical question in the setting of Down syndrome, 2) to demonstrate proof of concept of a rapid technique to measure BBPC in mice to improve CBF quantification, and 3) to translate the correction method by applying it to a population of healthy canines using equipment and parameters suitable for use with humans. Chapter 2 reports the results of an ASL study of adults with Down syndrome (DS). This population is unique for their extremely high prevalence of Alzheimer’s disease (AD) and very low prevalence of systemic cardiovascular risk factors like atherosclerosis and hypertension. This prompted the hypothesis that AD pathology would lead to the development of perfusion deficits in people with DS despite their healthy cardiovascular profile. The results demonstrate that perfusion is not compromised in DS participants until the middle of the 6th decade of life after which measured global CBF was reduced by 31% (p=0.029). There was also significantly higher prevalence of residual arterial signal in older participants with DS (60%) than younger DS participants (7%, p = 0.005) or non-DS controls (0%, p \u3c 0.001). This delayed pattern of perfusion deficits in people with DS differs from observations in studies of sporadic AD suggesting that adults with DS benefit from an improved cardiovascular risk profile early in life. Chapter 3 introduces calibrated short TR recovery (CaSTRR) imaging as a rapid method to measure BBPC and its development in mice. This was prompted by the inability to account for potential changes in BBPC due to age, brain atrophy, or the accumulation of hydrophobic A-β plaques in the ASL study of people with DS in Chapter 2. The CaSTRR method reduces acquisition time of BBPC maps by 87% and measures a significantly higher BBPC in cortical gray matter (0.99±0.04 mL/g,) than white matter in the corpus callosum (0.93±0.05 mL/g, p=0.03). Furthermore, when CBF maps are corrected for BBPC, the contrast between gray and white matter regions of interest is improved by 14%. This demonstrates proof of concept for the CaSTRR technique. Chapter 4 describes the application of CaSTRR on healthy canines (age 5-8 years) using a 3T human MRI scanner. This represents a translation of the technique to a setting suitable for use with a human subject. Both CaSTRR and pCASL acquisitions were performed and further optimization brought the acquisition time of CaSTRR down to 4 minutes which is comparable to pCASL. Results again show higher BBPC in gray matter (0.83 ± 0.05 mL/g) than white matter (0.78 ± 0.04 mL/g, p = 0.007) with both values unaffected by age over the range studied. Also, gray matter CBF is negatively correlated with age (p = 0.003) and BBPC correction improved the contrast to noise ratio by 3.6% (95% confidence interval = 0.6 – 6.5%). In summary, the quantification of ASL can be improved using BBPC maps derived from the novel, rapid CaSTRR technique

    Aerobic Exercise for the Promotion of Healthy Aging: Changes in Brain Structure Assessed with New Methods

    Get PDF
    As the proportion of older individuals in the population increases, so does the scientific concern surrounding age-related deterioration of brain tissue and related cognitive decline. One modifiable lifestyle factor of interest in the pursuit to slow or even reverse age-related brain atrophy is aerobic exercise. A number of studies have already demonstrated that aerobic exercise in older age can induce maintenance (i.e., reduction of loss) of both gray and white matter volume, particularly in the frontal regions of the brain, which are vulnerable to shrinkage in older age. Other magnetic resonance imaging (MRI)-based techniques, such as quantitative MRI and diffusion-weighted MRI, have been used to measure age-related deterioration of gray and white matter integrity in both voxel-wise analyses as well as on the latent level, but whether these negative changes can be ameliorated through exercise has yet to be shown. The current dissertation includes three papers which used a number of both established and novel MRI-based metrics to quantify changes in brain tissue integrity resulting from aging, as well as to investigate whether these changes can be ameliorated through aerobic exercise. In Paper I (Wenger et al., 2022), we tested the reliability of quantitative MRI measures, namely longitudinal relaxation rate, effective transverse relaxation rate, proton density, and magnetization transfer saturation, by measuring them in a two-day, four-session design with repositioning in the scanner. Using the intra-class effect decomposition model, we found that magnetization transfer saturation could reliably detect individual differences, validating its use to investigate changes in brain structure longitudinally, as well as correlations with other variables of interest, such as change in cardiovascular fitness. In Paper II (Polk et al., 2022), we tested the effects of aerobic exercise on a latent factor of gray-matter structural integrity, comprising observed measures of gray-matter volume, magnetization transfer saturation, and mean diffusivity, in regions of interest that have previously shown volumetric effects of aerobic exercise. We found that gray-matter structural integrity was maintained in frontal and midline regions, and that change in gray-matter structural integrity in the right anterior cingulate cortex was positively correlated with change in cardiovascular fitness within exercising participants. These results suggest a causal relationship between aerobic exercise, cardiovascular fitness, and gray-matter structural integrity in this region. In Paper III (Polk et al., 2022), we tested the effects of aerobic exercise on white matter integrity, measured with both established and recently developed metrics. We were able to replicate findings from a previous study on the effects of aerobic exercise on white matter volume, and we also found change-change correlations between white matter volume and cardiovascular fitness as well as between white matter volume and performance on a test of perceptual speed. We also found unexpected exercise-induced changes in the diffusion weighted imaging-derived metrics of fractional anisotropy, mean diffusivity, fiber density, and fiber density and cross-section. Specifically, we found increases (or decreases in the case of mean diffusivity) within control participants and decreases (or increases in mean diffusivity) in exercisers. Furthermore, we found that percent change in fiber density and fiber density and cross-section correlated negatively with percent change in both cardiovascular fitness and cognitive performance. This casts doubt on the functional interpretation of these measures and suggests that the “more is better” principle may not be universally applicable when investigating age-related and exercise-induced changes in white matter integrity. In sum, this dissertation showed that regular at-home aerobic exercise, which may be more accessible for older individuals than supervised exercise, can be an effective tool to ameliorate age-related decreases in a latent measure of gray-matter structural integrity as well as white matter volume. It also illuminated potential limitations of other measures of white matter integrity in the context of aging and aerobic exercise, and calls for further research into these novel measures, especially when considering functional outcomes such as cognitive performance

    Neuronal Tissue Deposition of Gadolinium following Single in Vivo Intravenous Exposure of Low Doses Of Gadodiamide In the Brains of Healthy Dogs and Comparison of Single- And Multi-Voxel Spectroscopy in the Normal Canine Brain at 3 Tesla

    Get PDF
    Proton MR spectroscopy is a tool that provides quantified brain bioprofiles. Two methods exist: single- and multi-voxel spectroscopy. No studies compare their clinical validity in vivo. Gadolinium based MR contrast agents are used to improve lesional conspicuity. Adverse events are reported. Brain deposition occurs following administration in people and murine models. In dogs, doses are anecdotal and deposition is not described. Eight normal dogs underwent MRI at 3 Tesla with two methods of spectroscopy and were administered varying doses of gadodiamide. No differences were seen between single- and multi-voxel spectroscopy when interrogating identical regions of interest. Brains were harvested and evaluated for gadolinium depots using inductively coupled plasma mass spectrometry. Gadolinium was found in the brains of all dogs with dose dependency. Further, adequate normal brain conspicuity was seen at a dose of 0.5 mmol/kg. Thus, clinical trials of gadolinium chelated contrast agents at this dose are recommended

    Syntax and semantics networks in the developing brain

    No full text

    Quantitative MRI provides markers of intra-, inter-regional, and age-related differences in young adult cortical microstructure

    Get PDF
    Measuring the structural composition of the cortex is critical to understanding typical development, yet few investigations in humans have charted markers in vivo that are sensitive to tissue microstructural attributes. Here, we used a well-validated quantitative MR protocol to measure four parameters (R1, MT, R2*, PD*) that differ in their sensitivity to facets of the tissue microstructural environment (R1, MT: myelin, macromolecular content; R2*: myelin, paramagnetic ions, i.e., iron; PD*: free water content). Mapping these parameters across cortical regions in a young adult cohort (18–39 years, N = 93) revealed expected patterns of increased macromolecular content as well as reduced tissue water content in primary and primary adjacent cortical regions. Mapping across cortical depth within regions showed decreased expression of myelin and related processes – but increased tissue water content – when progressing from the grey/white to the grey/pial boundary, in all regions. Charting developmental change in cortical microstructure cross-sectionally, we found that parameters with sensitivity to tissue myelin (R1 & MT) showed linear increases with age across frontal and parietal cortex (change 0.5–1.0% per year). Overlap of robust age effects for both parameters emerged in left inferior frontal, right parietal and bilateral pre-central regions. Our findings afford an improved understanding of ontogeny in early adulthood and offer normative quantitative MR data for inter- and intra-cortical composition, which may be used as benchmarks in further studies

    Quantitative Molecular MRI of Intervertebral Disc Degeneration

    Get PDF
    Degeneration of the intervertebral disc (IVD) is the most common cause of back-related disability among North American adults. Low-back-pain and associated disability costs the United States more than 100 billion dollars annually in health care expenditures and reduced productivity. The mechanism of IVD degeneration, especially its biomolecular aspect, is poorly understood in an in vivo setting. Thus there is increasingly a need for the non-invasive diagnosis and quantification of IVD degeneration. MRI is a non-invasive imaging modality capable of producing contrast sensitive to biomolecules. Therefore, the primary objective of this dissertation research project is to develop MRI techniques capable of non-invasive quantification of IVD biomolecular composition in vivo. We further developed three MRI techniques specifically for IVD imaging. Magnetization transfer (MT) MRI, T1ρ MRI and sodium MRI were first separately validated of their specificities for IVD biomolecular components. In doing so, we concluded that MT MRI is sensitive to IVD collagen content, T1ρ MRI is indicative of IVD osmotic pressure, and sodium MRI is sensitive to IVD proteoglycan (PG) content. Next, we applied all three techniques to human subjects in vivo. Due to the inherently low signal-to-noise ratio (SNR) efficiency of sodium MRI, we engineered a custom radio-frequency (RF) surface coil for sodium MRI of human lumbar spine on a 7 T MRI scanner. Cross-correlation of the MT MRI, T1ρ MRI and sodium MRI data with the corresponding Pfirrmann grade revealed that the relative collagen density of IVD increases with degeneration, the IVD osmotic pressure decreases with degeneration, and the IVD PG content decreases with degeneration. By establishing that in vivo MT MRI, T1ρ MRI and sodium MRI can be used to quantify multiple IVD biomolecular characteristics non-invasively, we open up the possibility to conduct longitudinal studies on human subjects as they undergo IVD degeneration. The combination of MT MRI, T1ρ MRI and sodium MRI provides scientists and clinicians with the diagnostic tool to improve our understanding of IVD degeneration, which could benefit future treatment and prognosis of IVD degeneration

    White matter plasticity in healthy older adults: The effects of aerobic exercise

    Get PDF
    White matter deterioration is associated with cognitive impairment in healthy aging and Alzheimer\u27s disease. It is critical to identify interventions that can slow down white matter deterioration. So far, clinical trials have failed to demonstrate the benefits of aerobic exercise on the adult white matter using diffusion Magnetic Resonance Imaging. Here, we report the effects of a 6-month aerobic walking and dance interventions (clinical trial NCT01472744) on white matter integrity in healthy older adults (n = 180, 60-79 years) measured by changes in the ratio of calibrated T1- to T2-weighted images (T1w/T2w). Specifically, the aerobic walking and social dance interventions resulted in positive changes in the T1w/T2w signal in late-myelinating regions, as compared to widespread decreases in the T1w/T2w signal in the active control. Notably, in the aerobic walking group, positive change in the T1w/T2w signal correlated with improved episodic memory performance. Lastly, intervention-induced increases in cardiorespiratory fitness did not correlate with change in the T1w/T2w signal. Together, our findings suggest that white matter regions that are vulnerable to aging retain some degree of plasticity that can be induced by aerobic exercise training. In addition, we provided evidence that the T1w/T2w signal may be a useful and broadly accessible measure for studying short-term within-person plasticity and deterioration in the adult human white matter
    corecore