22 research outputs found

    Soluções de broadcast para redes 4G

    Get PDF
    Mestrado em Engenharia Electrónica e de TelecomunicaçõesA primeira difusão de conteúdos video e audio teve um forte impacto no quotidiano da população que assistiu a uma revolução nos modelos de transmissão de informação e de entretenimento. A evolução desde então foi significativa, e já na era digital, encontramo-nos face a uma nova sub-elevação da metodologia e do conceito subjacentes à transmissão de conteudos multimédia. O mundo actual apresenta, contudo, diferentes requisitos, de entre os quais se destacam a procura pela alta definição e mobilidade. A mobilidade tem sido um particular foco de atenção por parte dos operadores que exploram agora modelos para entregar uma vasta gama de serviços que sejam atractivos para os utilizadores. Esta dissertação apresenta um sumário das tecnologias emergentes de broadcast que se distinguem nas várias partes do mundo com a sua particular incidência geográfica, características e cenários de aplicação. É ainda apresentada uma arquitectura 4G abordando assuntos inerentes à mobilidade e qualidade de serviço com particular incidência nos aspectos relacionados com a integração de uma tecnologia de broadcast particular. Para avaliação da arquitectura proposta foram efectuados estudos com base num equipamento de broadcast na sua versão comercial, permitindo desta forma obter uma análise que ilustra o que os operadores podem esperar do estado actual dos dispositivos. Os resultados permitiram retirar ilações sobre o comportamento de um equipamento considerado como um produto final a disponibilizar aos operadores, quando integrado num ambiente 4G com suporte de mobilidade e QoS. Nomeadamente é discutida a sua aplicabildiade tendo em linha de conta as desvantagens introduzidas pelas características inerentes à própria tecnologia.Broadcast of video and audio through analogical television completely changed the paradigm of information and entertainment divulgation. Today, in the “digital era”, the Analogue Switch Off revolution is being held. Manufacturers and operators already show concerns regarding the support of mobility, quality of experience and of service. Delivering competitive High Definition contents and providing solutions for the average “on-the-move” user are two of the most important issues to be dealt by the service providers, which are also within the analysis scope of this work. This dissertation presents an overview on the most relevant broadcast technologies which are assumed to be of relative acceptance in their respective target market. It presents their main characteristics and applicability. 4G architectural concepts are also analyzed, closely dealing with mobility and quality of service provisioning, with particular focus on the seamless integration of broadcast technologies. As a mean to evaluate the feasibility of integrating broadcast technologies with 4G architectures, a performance evaluation study was performed using commercial equipment. In this way a several set of considerations constructed illustrating the features and functionalities which operators can expect or disregard from professional commercial broadcasting devices. Results allow the withdrawing of conclusions concerning the integration of a final broadcasting solution when incorporated within a 4G environment with QoS and mobility support. Its applicability is evaluated having in mind the performance drawbacks introduced by the specific technology, and generalized towards the gathering of more general conclusions which consider the main characteristics of the commercial broadcasting devices

    Context transfer support for mobility management in all-IP networks.

    Get PDF
    This thesis is a description of the research undertaken in the course of the PhD and evolves around a context transfer protocol which aims to complement and support mobility management in next generation mobile networks. Based on the literature review, it was identified that there is more to mobility management than handover management and the successful change of routing paths. Supportive mechanisms like fast handover, candidate access router discovery and context transfer can significantly contribute towards achieving seamless handover which is especially important in the case of real time services. The work focused on context transfer motivated by the fact that it could offer great benefits to session re-establishment during the handover operation of a mobile user and preliminary testbed observations illustrated the need for achieving this. Context transfer aims to minimize the impact of certain transport, routing, security-related services on the handover performance. When a mobile node (MN) moves to a new subnet it needs to continue such services that have already been established at the previous subnet. Examples of such services include AAA profile, IPsec state, header compression, QoS policy etc. Re-establishing these services at the new subnet will require a considerable amount of time for the protocol exchanges and as a result time- sensitive real-time traffic will suffer during this time. By transferring state to the new domain candidate services will be quickly re-established. This would also contribute to the seamless operation of application streams and could reduce susceptibility to errors. Furthermore, re-initiation to and from the mobile node will be avoided hence wireless bandwidth efficiency will be conserved. In this research an extension to mobility protocols was proposed for supporting state forwarding capabilities. The idea of forwarding states was also explored for remotely reconfiguring middleboxes to avoid any interruption of a mobile users' sessions or services. Finally a context transfer module was proposed to facilitate the integration of such a mechanism in next generation architectures. The proposals were evaluated analytically, via simulations or via testbed implementation depending on the scenario investigated. The results demonstrated that the proposed solutions can minimize the impact of security services like authentication, authorization and firewalls on a mobile user's multimedia sessions and thus improving the overall handover performance

    IEEE 802.21 in heterogeneous handover environments

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaO desenvolvimento das capacidades tecnológicas dos terminais móveis, e das infra-estruturas que os suportam, potenciam novos cenários onde estes dispositivos munidos com interfaces de diferentes tecnologias vagueiam entre diferentes ambientes de conectividade. É assim necessário providenciar meios que facilitem a gestão de mobilidade, permitindo ao terminal ligar-se da melhor forma (i.e., optando pela melhor tecnologia) em qualquer altura. A norma IEEE 802.21 está a ser desenvolvida pelo Institute of Electrical and Electronics Engineers (IEEE) com o intuito de providenciar mecanismos e serviços que facilitem e optimizem handovers de forma independente da tecnologia. A norma 802.21 especifica assim um conjunto de mecanismos que potenciarão cenários como o descrito acima, tendo em conta a motivação e requerimentos apresentados por arquitecturas de redes futuras, como as redes de quarta geração (4G). Esta dissertação apresenta uma análise extensiva da norma IEEE 802.21, introduzindo um conjunto de simulações desenvolvidas para estudar o impacto da utilização de mecanismos 802.21 em handovers controlados por rede, numa rede de acesso mista composta por tecnologias 802.11 e 3G. Os resultados obtidos permitiram verificar a aplicabilidade destes conceitos a ambientes de próxima geração, motivando também uma descrição do desenho de integração de mecanismos 802.21 a arquitecturas de redes de quarta geração. ABSTRACT: The development of the technological capabilities of mobile terminals, and the infra-structures that support them, enable new scenarios where these devices using different technology interfaces roam in different connectivity environments. This creates a need for providing the means that facilitate mobility management, allowing the terminal to connect in the best way possible (i.e., by choosing the best technology) at any time. The IEEE 802.21 standard is being developed by the Institute of Electrical and Electronics Engineers (IEEE) to provide mechanisms and services supporting Media Independent Handovers. The 802.21 standard specifies a set of mechanisms that enable scenarios like the one described above, considering the motivation and requirements presented by future network architectures, such as the ones from fourth generation networks (4G). This thesis presents an extensive analysis of the IEEE 802.21 standard, introducing a set of simulations developed for studying the impact of using 802.21 mechanisms in network controlled handovers, in a mixed access network composed of 802.11 and 3G technologies. The obtained results allow the verification of the applicability of these concepts into next generation environments, also motivating the description of the design for integration of 802.21 mechanisms to fourth generation networks

    Fast and seamless mobility management in IPV6-based next-generation wireless networks

    Get PDF
    Introduction -- Access router tunnelling protocol (ARTP) -- Proposed integrated architecture for next generation wireless networks -- Proposed seamless handoff schemes in next generation wireless networks -- Proposed fast mac layer handoff scheme for MIPV6/WLANs

    IP Flow Mobility support for Proxy Mobile IPv6 based networks

    Get PDF
    The ability of offloading selected IP data traffic from 3G to WLAN access networks is considered a key feature in the upcoming 3GPP specifications, being the main goal to alleviate data congestion in celular networks while delivering a positive user experience. Lately, the 3GPP has adopted solutions that enable mobility of IP-based wireless devices relocating mobility functions from the terminal to the network. To this end, the IETF has standardized Proxy Mobile IPv6 (PMIPv6), a protocol capable to hide often complex mobility procedures from the mobile devices. This thesis, in line with the mentioned offload requirement, further extends Proxy Mobile IPv6 to support dynamic IP flow mobility management across access wireless networks according to operator policies. In this work, we assess the feasibility of the proposed solution and provide an experimental analysis based on a prototype network setup, implementing the PMIPv6 protocol and the related enhancements for flow mobility support. *** La capacità di spostare flussi IP da una rete di accesso 3G ad una di tipo WLAN è considerata una caratteristica chiave nelle specifiche future di 3GPP, essendo il principale metodo per alleviare la congestione nelle reti cellulari mantenendo al contempo una ragionevole qualità percepita dall'utente. Recentemente, 3GPP ha adottato soluzioni di mobilità per dispositivi con accesso radio basato su IP, traslando le funzioni di supporto dal terminale alla rete, e, a questo scopo, IETF ha standardizzato Proxy Mobile IPv6 (PMIPv6), un protocollo studiato per nascondere le procedure di mobilità ai sistemi mobili. Questa tesi, in linea con la citata esigenza di spostare flussi IP, estende ulteriormente PMIPv6 per consentire il supporto alla mobilità di flussi tra diverse reti di accesso wireless, assecondando le regole e/o politiche definite da un operatore. In questo lavoro, ci proponiamo di asserire la fattibilità della soluzione proposta, fornendo un'analisi sperimentale di essa sulla base di un prototipo di rete che implementa il protocollo PMIPv6 e le relative migliorie per il supporto alla mobilità di flussiope

    Contributions to Vehicular Communications Systems and Schemes

    Get PDF
    La dernière décennie a marqué une grande hausse des applications véhiculaires comme une nouvelle source de revenus et un facteur de distinction dans l'industrie des véhicules. Ces applications véhiculaires sont classées en deux groupes : les applications de sécurité et les applications d'info divertissement. Le premier groupe inclue le changement intelligent de voie, l'avertissement de dangers de routes et la prévention coopérative de collision qui comprend la vidéo sur demande (VoD), la diffusion en direct, la diffusion de météo et de nouvelles et les jeux interactifs. Cependant, Il est à noter que d'une part, les applications véhiculaires d'info divertissement nécessitent une bande passante élevée et une latence relativement faible ; D'autre part, les applications de sécurité requièrent exigent un délai de bout en bout très bas et un canal de communication fiable pour la livraison des messages d'urgence. Pour satisfaire le besoin en applications efficaces, les fabricants de véhicules ainsi que la communauté académique ont introduit plusieurs applications à l’intérieur de véhicule et entre véhicule et véhicule (V2V). Sauf que, l'infrastructure du réseau sans fil n'a pas été conçue pour gérer les applications de véhicules, en raison de la haute mobilité des véhicules, de l'imprévisibilité du comportement des conducteurs et des modèles de trafic dynamiques. La relève est l'un des principaux défis des réseaux de véhicules, car la haute mobilité exige au réseau sans fil de faire la relève en un très court temps. De plus, l'imprévisibilité du comportement du conducteur cause l'échec des protocoles proactifs traditionnels de relève, car la prédiction du prochain routeur peut changer en fonction de la décision du conducteur. Aussi, le réseau de véhicules peut subir une mauvaise qualité de service dans les régions de relève en raison d'obstacles naturels, de véhicules de grande taille ou de mauvaises conditions météorologiques. Cette thèse se concentre sur la relève dans l'environnement des véhicules et son effet sur les applications véhiculaires. Nous proposons des solutions pratiques pour les réseaux actuellement déployés, principalement les réseaux LTE, l'infrastructure véhicule à véhicule (V2V) ainsi que les outils efficaces d’émulateurs de relèves dans les réseaux véhiculaires.----------ABSTRACT: The last decade marked the rise of vehicular applications as a new source of revenue and a key differentiator in the vehicular industry. Vehicular Applications are classified into safety and infotainment applications. The former include smart lane change, road hazard warning, and cooperative collision avoidance; however, the latter include Video on Demand (VoD), live streaming, weather and news broadcast, and interactive games. On one hand, infotainment vehicular applications require high bandwidth and relatively low latency; on the other hand, safety applications requires a very low end to end delay and a reliable communication channel to deliver emergency messages. To satisfy the thirst for practical applications, vehicle manufacturers along with research institutes introduced several in-vehicle and Vehicle to Vehicle (V2V) applications. However, the wireless network infrastructure was not designed to handle vehicular applications, due to the high mobility of vehicles, unpredictability of drivers’ behavior, and dynamic traffic patterns. Handoff is one of the main challenges of vehicular networks since the high mobility puts pressure on the wireless network to finish the handoff within a short period. Moreover, the unpredictability of driver behavior causes the traditional proactive handoff protocols to fail, since the prediction of the next router may change based on the driver’s decision. Moreover, the vehicular network may suffer from bad Quality of Service (QoS) in the regions of handoff due to natural obstacles, large vehicles, or weather conditions. This thesis focuses on the handoff on the vehicular environment and its effect on the vehicular applications. We consider practical solutions for the currently deployed networks mainly Long Term Evolution (LTE) networks, the Vehicle to Vehicle (V2V) infrastructure, and the tools that can be used effectively to emulate handoff on the vehicular networks

    Mobility Management in New Internet Architectures

    Get PDF
    The software integration with new network architectures via Software-Defined Networking (SDN) axis appears to be a major evolution of networks. While this paradigm was primarily developed for easy network setup, its ability to integrate services has also to be considered. Thus, the mobility service for which solutions have been proposed in conventional architectures by defining standardized protocols should be rethought in terms of SDN service. Mobile devices might use or move in SDN network. In this thesis, we proposed a new mobility management approach which called "SDN-Mobility" and has shown that SDN can be implemented without IP mobility protocol for providing mobility like as Proxy Mobile IPv6 (PMIPv6) that is the solution adopted by 3GPP, with some performance gain. However, PMIPv6 and SDN-Mobility have some packets loss during Mobile Node (MN) handover. Thus, in this thesis, we proposed a new paradigm based on caching function to improve the quality of transfer during handover. Caching policy cooperates with SDN controller for automatic buffering of the data during the handover. We proposed two caching policies that are compared through a performance analysis regarding the quality of transfer for the user and for the operator. This thesis also presented that SDN-Mobility with caching policy can be applied easily for mobility management in heterogeneous network architectures able to integrate the future Internet based on the Information-Centric Networking (ICN)

    Host mobility management with identifier-locator split protocols in hierarchical and flat networks

    Get PDF
    Includes abstractIncludes bibliographical references.As the Internet increasingly becomes more mobile focused and overloaded with mobile hosts, mobile users are bound to roam freely and attach to a variety of networks. These different networks converge over an IP-based core to enable ubiquitous network access, anytime and anywhere, to support the provision of services, that is, any service, to mobile users. Therefore, in this thesis, the researcher proposed network-based mobility solutions at different layers to securely support seamless handovers between heterogeneous networks in hierarchical and flat network architectures

    Securing Handover in Wireless IP Networks

    Get PDF
    In wireless and mobile networks, handover is a complex process that involves multiple layers of protocol and security executions. With the growing popularity of real time communication services such as Voice of IP, a great challenge faced by handover nowadays comes from the impact of security implementations that can cause performance degradation especially for mobile devices with limited resources. Given the existing networks with heterogeneous wireless access technologies, one essential research question that needs be addressed is how to achieve a balance between security and performance during the handover. The variations of security policy and agreement among different services and network vendors make the topic challenging even more, due to the involvement of commercial and social factors. In order to understand the problems and challenges in this field, we study the properties of handover as well as state of the art security schemes to assist handover in wireless IP networks. Based on our analysis, we define a two-phase model to identify the key procedures of handover security in wireless and mobile networks. Through the model we analyze the performance impact from existing security schemes in terms of handover completion time, throughput, and Quality of Services (QoS). As our endeavor of seeking a balance between handover security and performance, we propose the local administrative domain as a security enhanced localized domain to promote the handover performance. To evaluate the performance improvement in local administrative domain, we implement the security protocols adopted by our proposal in the ns-2 simulation environment and analyze the measurement results based on our simulation test

    Mobility management across converged IP-based heterogeneous access networks

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 8/2/2010.In order to satisfy customer demand for a high performance “global” mobility service, network operators (ISPs, carriers, mobile operators, etc.) are facing the need to evolve to a converged “all-IP” centric heterogeneous access infrastructure. However, the integration of such heterogeneous access networks (e.g. 802.11, 802.16e, UMTS etc) brings major mobility issues. This thesis tackles issues plaguing existing mobility management solutions in converged IP-based heterogeneous networks. In order to do so, the thesis firstly proposes a cross-layer mechanism using the upcoming IEEE802.21 MIH services to make intelligent and optimized handovers. In this respect, FMIPv6 is integrated with the IEEE802.21 mechanism to provide seamless mobility during the overall handover process. The proposed solution is then applied in a simulated vehicular environment to optimize the NEMO handover process. It is shown through analysis and simulations of the signalling process that the overall expected handover (both L2 and L3) latency in FMIPv6 can be reduced by the proposed mechanism by 69%. Secondly, it is expected that the operator of a Next Generation Network will provide mobility as a service that will generate significant revenues. As a result, dynamic service bootstrapping and authorization mechanisms must be in place to efficiently deploy a mobility service (without static provisioning), which will allow only legitimate users to access the service. A GNU Linux based test-bed has been implemented to demonstrate this. The experiments presented show the handover performance of the secured FMIPv6 over the implemented test-bed compared to plain FMIPv6 and MIPv6 by providing quantitative measurements and results on the quality of experience perceived by the users of IPv6 multimedia applications. The results show the inclusion of the additional signalling of the proposed architecture for the purpose of authorization and bootstrapping (i.e. key distribution using HOKEY) has no adverse effect on the overall handover process. Also, using a formal security analysis tool, it is shown that the proposed mechanism is safe/secure from the induced security threats. Lastly, a novel IEEE802.21 assisted EAP based re-authentication scheme over a service authorization and bootstrapping framework is presented. AAA based authentication mechanisms like EAP incur signalling overheads due to large RTTs. As a result, overall handover latency also increases. Therefore, a fast re-authentication scheme is presented which utilizes IEEE802.21 MIH services to minimize the EAP authentication process delays and as a result reduce the overall handover latency. Analysis of the signalling process based on analytical results shows that the overall handover latency for mobility protocols will be approximately reduced by 70% by the proposed scheme
    corecore