2,219 research outputs found

    Intrusion detection system alert correlation with operating system level logs

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2009Includes bibliographical references (leaves: 63-66)Text in English; Abstract: Turkish and Englishvii, 67 leavesInternet is a global public network. More and more people are getting connected to the Internet every day to take advantage of the Internetwork connectivity. It also brings in a lot of risk on the Internet because there are both harmless and harmful users on the Internet. While an organization makes its information system available to harmless Internet users, at the same time the information is available to the malicious users as well. Most organizations deploy firewalls to protect their private network from the public network. But, no network can be hundred percent secured. This is because; the connectivity requires some kind of access to be granted on the internal systems to Internet users. The firewall provides security by allowing only specific services through it. The firewall implements defined rules to each packet reaching to its network interface. The IDS complements the firewall security by detected if someone tries to break in through the firewall or manages to break in the firewall security and tried to have access on any system in the trusted site and alerted the system administrator in case there is a breach in security. However, at present, IDSs suffer from several limitations. To address these limitations and learn network security threats, it is necessary to perform alert correlation. Alert correlation focuses on discovering various relationships between individual alerts. Intrusion alert correlation techniques correlate alerts into meaningful groups or attack scenarios for ease to understand by human analysts. In order to be sure about the alert correlation working properly, this thesis proposed to use attack scenarios by correlating alerts on the basis of prerequisites and consequences of intrusions. The architecture of the experimental environment based on the prerequisites and consequences of different types of attacks, the proposed approach correlates alerts by matching the consequence of some previous alerts and the prerequisite of some later ones with OS-level logs. As a result, the accuracy of the proposed method and its advantage demonstrated to focus on building IDS alert correlation with OS-level logs in information security systems

    Securing the software-defined networking control plane by using control and data dependency techniques

    Get PDF
    Software-defined networking (SDN) fundamentally changes how network and security practitioners design, implement, and manage their networks. SDN decouples the decision-making about traffic forwarding (i.e., the control plane) from the traffic being forwarded (i.e., the data plane). SDN also allows for network applications, or apps, to programmatically control network forwarding behavior and policy through a logically centralized control plane orchestrated by a set of SDN controllers. As a result of logical centralization, SDN controllers act as network operating systems in the coordination of shared data plane resources and comprehensive security policy implementation. SDN can support network security through the provision of security services and the assurances of policy enforcement. However, SDN’s programmability means that a network’s security considerations are different from those of traditional networks. For instance, an adversary who manipulates the programmable control plane can leverage significant control over the data plane’s behavior. In this dissertation, we demonstrate that the security posture of SDN can be enhanced using control and data dependency techniques that track information flow and enable understanding of application composability, control and data plane decoupling, and control plane insight. We support that statement through investigation of the various ways in which an attacker can use control flow and data flow dependencies to influence the SDN control plane under different threat models. We systematically explore and evaluate the SDN security posture through a combination of runtime, pre-runtime, and post-runtime contributions in both attack development and defense designs. We begin with the development a conceptual accountability framework for SDN. We analyze the extent to which various entities within SDN are accountable to each other, what they are accountable for, mechanisms for assurance about accountability, standards by which accountability is judged, and the consequences of breaching accountability. We discover significant research gaps in SDN’s accountability that impact SDN’s security posture. In particular, the results of applying the accountability framework showed that more control plane attribution is necessary at different layers of abstraction, and that insight motivated the remaining work in this dissertation. Next, we explore the influence of apps in the SDN control plane’s secure operation. We find that existing access control protections that limit what apps can do, such as role-based access controls, prove to be insufficient for preventing malicious apps from damaging control plane operations. The reason is SDN’s reliance on shared network state. We analyze SDN’s shared state model to discover that benign apps can be tricked into acting as “confused deputies”; malicious apps can poison the state used by benign apps, and that leads the benign apps to make decisions that negatively affect the network. That violates an implicit (but unenforced) integrity policy that governs the network’s security. Because of the strong interdependencies among apps that result from SDN’s shared state model, we show that apps can be easily co-opted as “gadgets,” and that allows an attacker who minimally controls one app to make changes to the network state beyond his or her originally granted permissions. We use a data provenance approach to track the lineage of the network state objects by assigning attribution to the set of processes and agents responsible for each control plane object. We design the ProvSDN tool to track API requests from apps as they access the shared network state’s objects, and to check requests against a predefined integrity policy to ensure that low-integrity apps cannot poison high-integrity apps. ProvSDN acts as both a reference monitor and an information flow control enforcement mechanism. Motivated by the strong inter-app dependencies, we investigate whether implicit data plane dependencies affect the control plane’s secure operation too. We find that data plane hosts typically have an outsized effect on the generation of the network state in reactive-based control plane designs. We also find that SDN’s event-based design, and the apps that subscribe to events, can induce dependencies that originate in the data plane and that eventually change forwarding behaviors. That combination gives attackers that are residing on data plane hosts significant opportunities to influence control plane decisions without having to compromise the SDN controller or apps. We design the EventScope tool to automatically identify where such vulnerabilities occur. EventScope clusters apps’ event usage to decide in which cases unhandled events should be handled, statically analyzes controller and app code to understand how events affect control plane execution, and identifies valid control flow paths in which a data plane attacker can reach vulnerable code to cause unintended data plane changes. We use EventScope to discover 14 new vulnerabilities, and we develop exploits that show how such vulnerabilities could allow an attacker to bypass an intended network (i.e., data plane) access control policy. This research direction is critical for SDN security evaluation because such vulnerabilities could be induced by host-based malware campaigns. Finally, although there are classes of vulnerabilities that can be removed prior to deployment, it is inevitable that other classes of attacks will occur that cannot be accounted for ahead of time. In those cases, a network or security practitioner would need to have the right amount of after-the-fact insight to diagnose the root causes of such attacks without being inundated with too much informa- tion. Challenges remain in 1) the modeling of apps and objects, which can lead to overestimation or underestimation of causal dependencies; and 2) the omission of a data plane model that causally links control and data plane activities. We design the PicoSDN tool to mitigate causal dependency modeling challenges, to account for a data plane model through the use of the data plane topology to link activities in the provenance graph, and to account for network semantics to appropriately query and summarize the control plane’s history. We show how prior work can hinder investigations and analysis in SDN-based attacks and demonstrate how PicoSDN can track SDN control plane attacks.Ope

    Quarc: an architecture for efficient on-chip communication

    Get PDF
    The exponential downscaling of the feature size has enforced a paradigm shift from computation-based design to communication-based design in system on chip development. Buses, the traditional communication architecture in systems on chip, are incapable of addressing the increasing bandwidth requirements of future large systems. Networks on chip have emerged as an interconnection architecture offering unique solutions to the technological and design issues related to communication in future systems on chip. The transition from buses as a shared medium to networks on chip as a segmented medium has given rise to new challenges in system on chip realm. By leveraging the shared nature of the communication medium, buses have been highly efficient in delivering multicast communication. The segmented nature of networks, however, inhibits the multicast messages to be delivered as efficiently by networks on chip. Relying on extensive research on multicast communication in parallel computers, several network on chip architectures have offered mechanisms to perform the operation, while conforming to resource constraints of the network on chip paradigm. Multicast communication in majority of these networks on chip is implemented by establishing a connection between source and all multicast destinations before the message transmission commences. Establishing the connections incurs an overhead and, therefore, is not desirable; in particular in latency sensitive services such as cache coherence. To address high performance multicast communication, this research presents Quarc, a novel network on chip architecture. The Quarc architecture targets an area-efficient, low power, high performance implementation. The thesis covers a detailed representation of the building blocks of the architecture, including topology, router and network interface. The cost and performance comparison of the Quarc architecture against other network on chip architectures reveals that the Quarc architecture is a highly efficient architecture. Moreover, the thesis introduces novel performance models of complex traffic patterns, including multicast and quality of service-aware communication

    Pathway Hunter Tool (PHT) ďż˝ A Platform for Metabolic Network Analysis and Potential Drug Targeting

    Get PDF
    Metabolic network analysis will play a major role in �Systems Biology� in the future as they represent the backbone of molecular activity within the cell. Recent studies have taken a comparative approach toward interpreting these networks, contrasting networks of different species and molecular types, and under varying conditions. We have developed a robust algorithm to calculate shortest path in the metabolic network using metabolite chemical structure information. A divide and conquer technique using Maximal Common Subgraph (MCS) approach and binary fingerprint was used to map each substrate onto its corresponding product. Then for the calculation of the shortest paths (using modified Breadth First Search algorithm) the two biochemical criteria �local� and �global� structural similarity were used, where �local similarity� is defined as the similarity between two intermediate molecules and �global similarity� is defined as the amount of conserved structure found between the source metabolite and the destination metabolites after a series of reaction steps. The pathway alignment was introduced to find enzyme(s) preference in the pathway of various organisms (a local and global outlook to metabolic networks). This was also used to predict potentially missing enzymes in the pathway. A novel concept called �load points� and �choke points� identifies hot spots in the network. This was used to find important enzymes in the pathogens metabolic network for potential drug targets

    Reasoning-Driven Question-Answering For Natural Language Understanding

    Get PDF
    Natural language understanding (NLU) of text is a fundamental challenge in AI, and it has received significant attention throughout the history of NLP research. This primary goal has been studied under different tasks, such as Question Answering (QA) and Textual Entailment (TE). In this thesis, we investigate the NLU problem through the QA task and focus on the aspects that make it a challenge for the current state-of-the-art technology. This thesis is organized into three main parts: In the first part, we explore multiple formalisms to improve existing machine comprehension systems. We propose a formulation for abductive reasoning in natural language and show its effectiveness, especially in domains with limited training data. Additionally, to help reasoning systems cope with irrelevant or redundant information, we create a supervised approach to learn and detect the essential terms in questions. In the second part, we propose two new challenge datasets. In particular, we create two datasets of natural language questions where (i) the first one requires reasoning over multiple sentences; (ii) the second one requires temporal common sense reasoning. We hope that the two proposed datasets will motivate the field to address more complex problems. In the final part, we present the first formal framework for multi-step reasoning algorithms, in the presence of a few important properties of language use, such as incompleteness, ambiguity, etc. We apply this framework to prove fundamental limitations for reasoning algorithms. These theoretical results provide extra intuition into the existing empirical evidence in the field

    Worst-case temporal analysis of real-time dynamic streaming applications

    Get PDF
    • …
    corecore