3,073 research outputs found

    An Inversion-Based Approach to Fault Detection and Isolation in Switching Electrical Networks

    Get PDF
    Abstract-This paper proposes a framework for fault detection and isolation (FDI) in electrical energy systems based on techniques developed in the context of invertibility of switched systems. In the absence of faults-the nominal mode of operation-the system behavior is described by one set of linear differential equations or more in the case of systems with natural switching behavior, e.g., power electronics systems. Faults are categorized as hard and soft. A hard fault causes abrupt changes in the system structure, which results in an uncontrolled transition from the nominal mode of operation to a faulty mode governed by a different set of differential equations. A soft fault causes a continuous change over time of certain system structure parameters, which results in unknown additive disturbances to the set(s) of differential equations governing the system dynamics. In this setup, the dynamic behavior of an electrical energy system (with possible natural switching) can be described by a switched state-space model where each mode is driven by possibly known and unknown inputs. The problem of detection and isolation of hard faults is equivalent to uniquely recovering the switching signal associated with uncontrolled transitions caused by hard faults. The problem of detection and isolation of soft faults is equivalent to recovering the unknown additive disturbance caused by the fault. Uniquely recovering both switching signal and unknown inputs is the concern of the (left) invertibility problem in switched systems, and we are able to adopt theoretical results on that problem, developed earlier, to the present FDI setting. The application of the proposed framework to fault detection and isolation in switching electrical networks is illustrated with several examples. Index Terms-Electrical energy systems, fault detection and isolation (FDI), invertibility, switched linear systems, switch-singular pairs

    Automatic programming methodologies for electronic hardware fault monitoring

    Get PDF
    This paper presents three variants of Genetic Programming (GP) approaches for intelligent online performance monitoring of electronic circuits and systems. Reliability modeling of electronic circuits can be best performed by the Stressor - susceptibility interaction model. A circuit or a system is considered to be failed once the stressor has exceeded the susceptibility limits. For on-line prediction, validated stressor vectors may be obtained by direct measurements or sensors, which after pre-processing and standardization are fed into the GP models. Empirical results are compared with artificial neural networks trained using backpropagation algorithm and classification and regression trees. The performance of the proposed method is evaluated by comparing the experiment results with the actual failure model values. The developed model reveals that GP could play an important role for future fault monitoring systems.This research was supported by the International Joint Research Grant of the IITA (Institute of Information Technology Assessment) foreign professor invitation program of the MIC (Ministry of Information and Communication), Korea

    Inversion-Based Approach for Detection and Isolation of Faults in Switched Linear Systems

    Get PDF
    This paper addresses the problem of the left inversion of switched linear systems from a diagnostics perspective. The problem of left inversion is to reconstruct the input of a system with the knowledge of its output, whose differentiation is usually required. In the case of this work, the objective is to reconstruct the system’s unknown inputs, based on the knowledge of its outputs, switching sequence and known inputs. With the inverse model of the switched linear system, a real-time Fault Detection and Isolation (FDI) algorithm with an integrated Fuzzy Logic System (FLS) that is capable of detecting and isolating abrupt faults occurring in the system is developed. In order to attenuate the effects of unknown disturbances and noise at the output of the inverse model, a smoothing strategy is also used. The results are illustrated with an example. The performance of the method is validated experimentally in a dc-dc boost converter, using a low-cost microcontroller, without any additional components.This work was funded by FCT—Fundação para a Ciência e a Tecnologia, within the project SAICTPAC/0004/2015—POCI-01-0145-FEDER-016434.info:eu-repo/semantics/publishedVersio

    Distributed Fault Diagnosis using Sensor Networks and Consensus-based Filters

    Get PDF
    This paper considers the problem of designing distributed fault diagnosis algorithms for dynamic systems using sensor networks. A network of distributed estimation agents is designed where a bank of local Kalman filters is embedded into each sensor. The diagnosis decision is performed by a distributed hypothesis testing method that relies on a belief consensus algorithm. Under certain assumptions, both the distributed estimation and the diagnosis algorithms are derived from their centralized counterparts thanks to dynamic average-consensus techniques. Simulation results are provided to demonstrate the effectiveness of the proposed architecture and algorithm

    Modeling and analysis of power processing systems: Feasibility investigation and formulation of a methodology

    Get PDF
    A review is given of future power processing systems planned for the next 20 years, and the state-of-the-art of power processing design modeling and analysis techniques used to optimize power processing systems. A methodology of modeling and analysis of power processing equipment and systems has been formulated to fulfill future tradeoff studies and optimization requirements. Computer techniques were applied to simulate power processor performance and to optimize the design of power processing equipment. A program plan to systematically develop and apply the tools for power processing systems modeling and analysis is presented so that meaningful results can be obtained each year to aid the power processing system engineer and power processing equipment circuit designers in their conceptual and detail design and analysis tasks

    Overload robust IGBT design for SSCB application

    Get PDF
    This paper presents an optimised power semiconductor architecture based on the CIGBT approach to be used in solid-state circuit breaker (SSCB) applications where the conduction losses have to be as low as possible without compromising the forward voltage blocking capability. Indeed, a high overcurrent turn-off and short-circuit withstand capabilities have to be ensured. Starting from a standard NPT-IGBT design for switching applications, the results show that the proposed device, which is optimised by the application of the individual clustered concept, offers a reduction in conduction losses of 13%, without compromise on voltage blocking capability. An original design solution is implemented to further ensure short-circuit and overload turn-off capabilities at maximum ambient temperature and twice the nominal rated current
    • …
    corecore