7,179 research outputs found

    An intuitive tangible game controller

    Get PDF
    This paper outlines the development of a sensory feedback device providing a low cost, versatile and intuitive interface for controlling digital environments, in this example a flight simulator. Gesture based input allows for a more immersive experience, so rather than making the user feel like they are controlling an aircraft the intuitive interface allows the user to become the aircraft that is controlled by the movements of the user's hand. The movements are designed to feel intuitive and allow for a sense of immersion that would be difficult to achieve with an alternative interface. In this example the user's hand can become the aircraft much the same way that a child would imagine it

    From ‘hands up’ to ‘hands on’: harnessing the kinaesthetic potential of educational gaming

    Get PDF
    Traditional approaches to distance learning and the student learning journey have focused on closing the gap between the experience of off-campus students and their on-campus peers. While many initiatives have sought to embed a sense of community, create virtual learning environments and even build collaborative spaces for team-based assessment and presentations, they are limited by technological innovation in terms of the types of learning styles they support and develop. Mainstream gaming development – such as with the Xbox Kinect and Nintendo Wii – have a strong element of kinaesthetic learning from early attempts to simulate impact, recoil, velocity and other environmental factors to the more sophisticated movement-based games which create a sense of almost total immersion and allow untethered (in a technical sense) interaction with the games’ objects, characters and other players. Likewise, gamification of learning has become a critical focus for the engagement of learners and its commercialisation, especially through products such as the Wii Fit. As this technology matures, there are strong opportunities for universities to utilise gaming consoles to embed levels of kinaesthetic learning into the student experience – a learning style which has been largely neglected in the distance education sector. This paper will explore the potential impact of these technologies, to broadly imagine the possibilities for future innovation in higher education

    Academical and Research Wiimote Applications

    Get PDF
    IADIS MULTI CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS 2008 Amsterdam, The Netherlands JULY 22 - 24, 2008This paper proposes the employment of the Wii Remote controller, better known as Wiimote, as an useful tool for educators and researchers. The quick development on fields such as Wireless Sensors and Actuators Networks or Hybrid Systems, and their applications, requires engineers with a solid knowledge in these areas. To achieve this goal the Wiimote becomes a great alternative to other options due to its great variety of analog and digital components, for a very low price, and the good documentation about it existing in Internet. As will be seen in this paper, the possible academical and research uses of the Wiimote are almost endless and cover many interesting problems in control engineering

    It’s not the model that doesn’t fit, it’s the controller! The role of cognitive skills in understanding the links between natural mapping, performance, and enjoyment of console video games

    Get PDF
    This study examines differences in performance, frustration, and game ratings of individuals playing first person shooter video games using two different controllers (motion controller and a traditional, pushbutton controller) in a within-subjects, randomized order design. Structural equation modeling was used to demonstrate that cognitive skills such as mental rotation ability and eye/hand coordination predicted performance for both controllers, but the motion control was significantly more frustrating. Moreover, increased performance was only related to game ratings for the traditional controller input. We interpret these data as evidence that, contrary to the assumption that motion controlled interfaces are more naturally mapped than traditional push-button controllers, the traditional controller was more naturally mapped as an interface for gameplay

    A short curriculum of the robotics and technology of computer lab

    Get PDF
    Our research Lab is directed by Prof. Anton Civit. It is an interdisciplinary group of 23 researchers that carry out their teaching and researching labor at the Escuela Politécnica Superior (Higher Polytechnic School) and the Escuela de Ingeniería Informática (Computer Engineering School). The main research fields are: a) Industrial and mobile Robotics, b) Neuro-inspired processing using electronic spikes, c) Embedded and real-time systems, d) Parallel and massive processing computer architecture, d) Information Technologies for rehabilitation, handicapped and elder people, e) Web accessibility and usability In this paper, the Lab history is presented and its main publications and research projects over the last few years are summarized.Nuestro grupo de investigación está liderado por el profesor Civit. Somos un grupo multidisciplinar de 23 investigadores que realizan su labor docente e investigadora en la Escuela Politécnica Superior y en Escuela de Ingeniería Informática. Las principales líneas de investigaciones son: a) Robótica industrial y móvil. b) Procesamiento neuro-inspirado basado en pulsos electrónicos. c) Sistemas empotrados y de tiempo real. d) Arquitecturas paralelas y de procesamiento masivo. e) Tecnología de la información aplicada a la discapacidad, rehabilitación y a las personas mayores. f) Usabilidad y accesibilidad Web. En este artículo se reseña la historia del grupo y se resumen las principales publicaciones y proyectos que ha conseguido en los últimos años
    corecore