1,079 research outputs found

    Treatment of imprecision in data repositories with the aid of KNOLAP

    Get PDF
    Traditional data repositories introduced for the needs of business processing, typically focus on the storage and querying of crisp domains of data. As a result, current commercial data repositories have no facilities for either storing or querying imprecise/ approximate data. No significant attempt has been made for a generic and applicationindependent representation of value imprecision mainly as a property of axes of analysis and also as part of dynamic environment, where potential users may wish to define their “own” axes of analysis for querying either precise or imprecise facts. In such cases, measured values and facts are characterised by descriptive values drawn from a number of dimensions, whereas values of a dimension are organised as hierarchical levels. A solution named H-IFS is presented that allows the representation of flexible hierarchies as part of the dimension structures. An extended multidimensional model named IF-Cube is put forward, which allows the representation of imprecision in facts and dimensions and answering of queries based on imprecise hierarchical preferences. Based on the H-IFS and IF-Cube concepts, a post relational OLAP environment is delivered, the implementation of which is DBMS independent and its performance solely dependent on the underlying DBMS engine

    Using Fuzzy Linguistic Representations to Provide Explanatory Semantics for Data Warehouses

    Get PDF
    A data warehouse integrates large amounts of extracted and summarized data from multiple sources for direct querying and analysis. While it provides decision makers with easy access to such historical and aggregate data, the real meaning of the data has been ignored. For example, "whether a total sales amount 1,000 items indicates a good or bad sales performance" is still unclear. From the decision makers' point of view, the semantics rather than raw numbers which convey the meaning of the data is very important. In this paper, we explore the use of fuzzy technology to provide this semantics for the summarizations and aggregates developed in data warehousing systems. A three layered data warehouse semantic model, consisting of quantitative (numerical) summarization, qualitative (categorical) summarization, and quantifier summarization, is proposed for capturing and explicating the semantics of warehoused data. Based on the model, several algebraic operators are defined. We also extend the SQL language to allow for flexible queries against such enhanced data warehouses

    Representing fuzzy decision tables in a fuzzy relational database environment.

    Get PDF
    In this paper the representation of decision tables in a relational database environment is discussed. First, crisp decision tables are defined. Afterwards a technique to represent decision tables in a relational system is presented. Next, fuzzy extensions are made to crisp decision tables in order to deal with imprecision and uncertainty. As a result, with crisp decision tables as special cases fuzzy decision tables are defined which include fuzziness in the conditions as well as in the actions. Analogous to the crisp case, it is demonstrated how fuzzy decision tables can be stored in a fuzzy relational database environment. Furthermore, consultation of these tables is discussed using fuzzy queries.Decision making;

    Data modeling dealing with uncertainty in fuzzy logic

    Get PDF
    This paper shows models of data description that incorporate uncertainty like models of data extension EER, IFO among others. These database modeling tools are compared with the pattern FuzzyEER proposed by us, which is an extension of the EER model in order to manage uncertainty with fuzzy logic in fuzzy databases. Finally, a table shows the components of EER tool with the representation of all the revised models.The past and the future of information systems: 1976-2006 and beyondRed de Universidades con Carreras en Informática (RedUNCI

    Querying Capability Enhancement in Database Using Fuzzy Logic

    Get PDF
    We already know that Structured Query Language (SQL) is a very powerful tool. It handles data, which is crisp and precise in nature.but it is unable to satisfy the needs for data which is uncertain, imprecise, inapplicable and vague in nature. The goal of this work is to use Fuzzy techniques i.e linguistic expressions and degrees of truth whose result are presented in this paper. For this purpose we have developed the fuzzy generalized logical condition for the WHERE part of SQL. In this way, fuzzy queries are accessing relational databases in the same way as with SQL. These queries with linguistic hedges are converted into Crisp Query, by deploying an application layer over the Structured Query Languag

    Imperfect Data In Database Context. How Are They Stored In Extended Relational Databases

    Get PDF
    Building a more accurate reality model requires taking into account imperfect information present in our knowledge and language. This paper presents several aspects of data imperfection in the database context and the appropriate frameworks for their treatment. It’s concluding that null value, possibility distribution and probability theory are the best solutions to represent incomplete, imprecise and uncertain data. For each of these problems there are some relational model extension proposals, including data representation and relational algebra

    Aspects of dealing with imperfect data in temporal databases

    Get PDF
    In reality, some objects or concepts have properties with a time-variant or time-related nature. Modelling these kinds of objects or concepts in a (relational) database schema is possible, but time-variant and time-related attributes have an impact on the consistency of the entire database. Therefore, temporal database models have been proposed to deal with this. Time itself can be at the source of imprecision, vagueness and uncertainty, since existing time measuring devices are inherently imperfect. Accordingly, human beings manage time using temporal indications and temporal notions, which may contain imprecision, vagueness and uncertainty. However, the imperfection in human-used temporal indications is supported by human interpretation, whereas information systems need extraordinary support for this. Several proposals for dealing with such imperfections when modelling temporal aspects exist. Some of these proposals consider the basis of the system to be the conversion of the specificity of temporal notions between used temporal expressions. Other proposals consider the temporal indications in the used temporal expressions to be the source of imperfection. In this chapter, an overview is given, concerning the basic concepts and issues related to the modelling of time as such or in (relational) database models and the imperfections that may arise during or as a result of this modelling. Next to this, a novel and currently researched technique for handling some of these imperfections is presented

    Proceedings of the first international VLDB workshop on Management of Uncertain Data

    Get PDF

    The design and implementation of fuzzy query processing on sensor networks

    Get PDF
    Sensor nodes and Wireless Sensor Networks (WSN) enable observation of the physical world in unprecedented levels of granularity. A growing number of environmental monitoring applications are being designed to leverage data collection features of WSN, increasing the need for efficient data management techniques and for comparative analysis of various data management techniques. My research leverages aspects of fuzzy database, specifically fuzzy data representation and fuzzy or flexible queries to improve upon the efficiency of existing data management techniques by exploiting the inherent uncertainty of the data collected by WSN. Herein I present my research contributions. I provide classification of WSN middleware to illustrate varying approaches to data management for WSN and identify a need to better handle the uncertainty inherent in data collected from physical environments and to take advantage of the imprecision of the data to increase the efficiency of WSN by requiring less information be transmitted to adequately answer queries posed by WSN monitoring applications. In this dissertation, I present a novel approach to querying WSN, in which semantic knowledge about sensor attributes is represented as fuzzy terms. I present an enhanced simulation environment that supports more flexible and realistic analysis by using cellular automata models to separately model the deployed WSN and the underlying physical environment. Simulation experiments are used to evaluate my fuzzy query approach for environmental monitoring applications. My analysis shows that using fuzzy queries improves upon other data management techniques by reducing the amount of data that needs to be collected to accurately satisfy application requests. This reduction in data transmission results in increased battery life within sensors, an important measure of cost and performance for WSN applications
    • …
    corecore