70,106 research outputs found

    An introduction to quantum filtering

    Get PDF
    This paper provides an introduction to quantum filtering theory. An introduction to quantum probability theory is given, focusing on the spectral theorem and the conditional expectation as a least squares estimate, and culminating in the construction of Wiener and Poisson processes on the Fock space. We describe the quantum It\^o calculus and its use in the modelling of physical systems. We use both reference probability and innovations methods to obtain quantum filtering equations for system-probe models from quantum optics.Comment: 41 pages, 1 figur

    A discrete invitation to quantum filtering and feedback control

    Get PDF
    The engineering and control of devices at the quantum-mechanical level--such as those consisting of small numbers of atoms and photons--is a delicate business. The fundamental uncertainty that is inherently present at this scale manifests itself in the unavoidable presence of noise, making this a novel field of application for stochastic estimation and control theory. In this expository paper we demonstrate estimation and feedback control of quantum mechanical systems in what is essentially a noncommutative version of the binomial model that is popular in mathematical finance. The model is extremely rich and allows a full development of the theory, while remaining completely within the setting of finite-dimensional Hilbert spaces (thus avoiding the technical complications of the continuous theory). We introduce discretized models of an atom in interaction with the electromagnetic field, obtain filtering equations for photon counting and homodyne detection, and solve a stochastic control problem using dynamic programming and Lyapunov function methods.Comment: 76 pages, 12 figures. A PDF file with high resolution figures can be found at http://minty.caltech.edu/papers.ph

    Fault Tolerant Filtering and Fault Detection for Quantum Systems Driven By Fields in Single Photon States

    Full text link
    The purpose of this paper is to solve a fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.Comment: arXiv admin note: text overlap with arXiv:1504.0678
    • …
    corecore