11,707 research outputs found

    An Introduction to Quantum Computing for Non-Physicists

    Full text link
    Richard Feynman's observation that quantum mechanical effects could not be simulated efficiently on a computer led to speculation that computation in general could be done more efficiently if it used quantum effects. This speculation appeared justified when Peter Shor described a polynomial time quantum algorithm for factoring integers. In quantum systems, the computational space increases exponentially with the size of the system which enables exponential parallelism. This parallelism could lead to exponentially faster quantum algorithms than possible classically. The catch is that accessing the results, which requires measurement, proves tricky and requires new non-traditional programming techniques. The aim of this paper is to guide computer scientists and other non-physicists through the conceptual and notational barriers that separate quantum computing from conventional computing. We introduce basic principles of quantum mechanics to explain where the power of quantum computers comes from and why it is difficult to harness. We describe quantum cryptography, teleportation, and dense coding. Various approaches to harnessing the power of quantum parallelism are explained, including Shor's algorithm, Grover's algorithm, and Hogg's algorithms. We conclude with a discussion of quantum error correction.Comment: 45 pages. To appear in ACM Computing Surveys. LATEX file. Exposition improved throughout thanks to reviewers' comment

    A Gentle Introduction to Quantum Computing Algorithms with Applications to Universal Prediction

    Full text link
    In this technical report we give an elementary introduction to Quantum Computing for non-physicists. In this introduction we describe in detail some of the foundational Quantum Algorithms including: the Deutsch-Jozsa Algorithm, Shor's Algorithm, Grocer Search, and Quantum Counting Algorithm and briefly the Harrow-Lloyd Algorithm. Additionally we give an introduction to Solomonoff Induction, a theoretically optimal method for prediction. We then attempt to use Quantum computing to find better algorithms for the approximation of Solomonoff Induction. This is done by using techniques from other Quantum computing algorithms to achieve a speedup in computing the speed prior, which is an approximation of Solomonoff's prior, a key part of Solomonoff Induction. The major limiting factors are that the probabilities being computed are often so small that without a sufficient (often large) amount of trials, the error may be larger than the result. If a substantial speedup in the computation of an approximation of Solomonoff Induction can be achieved through quantum computing, then this can be applied to the field of intelligent agents as a key part of an approximation of the agent AIXI

    Entangled states of light

    Full text link
    These notes are more or less a faithful representation of my talk at the Workshop on ``Quantum Coding and Quantum Computing'' held at the University of Virginia. As such it is an introduction for non-physicists to the topics of the quantum theory of light and entangled states of light. In particular, I discuss the photon concept and what is really entangled in an entangled state of light (it is not the photons). Moreover, I discuss an example that highlights the peculiar behavior of entanglement in an infinite-dimensional Hilbert space.Comment: 5 pages, 1 figure, notes of my talk at the Workshop on ``Quantum Coding and Quantum Computing'' held at the University of Virgini

    Free Will - A road less travelled in quantum information

    Full text link
    Conway and Kochen's Free Will Theory is examined as an important foundational element in a new area of activity in computer science - developing protocols for quantum computingComment: 18 pages including reference

    Yet another time about time - Part I

    Full text link
    This paper presents yet another personal reflection on one the most important concepts in both science and the humanities: time. This elusive notion has been not only bothering philosophers since Plato and Aristotle. It goes throughout human history embracing all analytical and creative (anthropocentric) disciplines. Time has been a central theme in physical and life sciences, philosophy, psychology, music, art and many more. This theme is known with a vast body of knowledge across different theories and categories. What has been explored concerns its nature (rational, irrational, arational), appearances/qualia, degrees, dimensions and scales of conceptualization (internal, external, fractal, discrete, continuous, mechanical, quantum, local, global, etc.). Of particular interest have been parameters of time such as duration ranges, resolutions, modes (present, now, past, future), varieties of tenses (e.g. present perfect, present progressive, etc.) and some intuitive, but also fancy phenomenological characteristics such as arrow, stream, texture, width, depth, density, even scent. Perhaps the most distinct characteristic of this fundamental concept is the absolute time constituting the flow of consciousness according to Husserl, the reflection of pure (human) nature without having the distinction between exo and endo. This essay is a personal reflection upon the meaning of time in modern physics and phenomenological philosophy.Comment: 35 pages, 1 figures, to be published in: J. Progress in Biophysics and Molecular Biology. Vol. 119, Issue 2. Special Theme Issue on Integral Biomathics: Life Sciences, Mathematics, and Phenomenological Philosophy. Elsevier. ISSN: 0079-6107, Progress in Biophysics and Molecular Biology, Vol. 119, Issue 2, 201

    Quantum entanglement

    Full text link
    Expository paper providing a historical survey of the gradual transformation of the "philosophical discussions" between Bohr, Einstein and Schr\"odinger on foundational issues in quantum mechanics into a quantitative prediction of a new quantum effect, its experimental verification and its proposed (and loudly advertised) applications. The basic idea of the 1935 paper of Einstein-Podolsky-Rosen (EPR) was reformulated by David Bohm for a finite dimensional spin system. This allowed John Bell to derive his inequalities that separate the prediction of quantum entanglement from its possible classical interpretation. We reproduce here their later (1971) version, reviewing on the way the generalization (and mathematical derivation) of Heisenberg's uncertainty relations (due to Weyl and Schr\"odinger) needed for the passage from EPR to Bell. We also provide an improved derivation of the quantum theoretic violation of Bell's inequalities. Soon after the experimental confirmation of the quantum entanglement (culminating with the work of Alain Aspect) it was Feynman who made public the idea of a quantum computer based on the observed effect.Comment: 15 pages, 2 figures. Dedicated to the memory of Professor Christo Christov (1915-1990

    Machine Learning for Condensed Matter Physics

    Full text link
    Condensed Matter Physics (CMP) seeks to understand the microscopic interactions of matter at the quantum and atomistic levels, and describes how these interactions result in both mesoscopic and macroscopic properties. CMP overlaps with many other important branches of science, such as Chemistry, Materials Science, Statistical Physics, and High-Performance Computing. With the advancements in modern Machine Learning (ML) technology, a keen interest in applying these algorithms to further CMP research has created a compelling new area of research at the intersection of both fields. In this review, we aim to explore the main areas within CMP, which have successfully applied ML techniques to further research, such as the description and use of ML schemes for potential energy surfaces, the characterization of topological phases of matter in lattice systems, the prediction of phase transitions in off-lattice and atomistic simulations, the interpretation of ML theories with physics-inspired frameworks and the enhancement of simulation methods with ML algorithms. We also discuss in detail the main challenges and drawbacks of using ML methods on CMP problems, as well as some perspectives for future developments.Comment: 48 pages, 2 figures, 300 references. Review paper. Major Revisio

    Is Planck's Constant h a "Quantum" Constant? An Alternative Classical Interpretation

    Full text link
    Although Planck's constant h is currently regarded as the elementary quantum of action appearing in quantum theory, it can also be interpreted as the multiplicative scale factor setting the scale of classical zero-point radiation appearing in classical electromagnetic theory. Relativistic classical electron theory with classical electromagnetic zero-point radiation gives many results in agreement with quantum theory. The areas of agreement between this classical theory and Nature seem worth further investigation.Comment: 10 page

    mc4qcd: Online Analysis Tool for Lattice QCD

    Full text link
    mc4qcd is a web based collaboration tool for analysis of Lattice QCD data. Lattice QCD computations consists of a large scale Markov Chain Monte Carlo. Multiple measurements are performed at each MC step. Our system acquires the data by uploading log files, parses them for results of measurements, filters the data, mines for required information by aggregating results, represents the results as plots and histograms, and it further allows refining and interaction by fitting the results. The system computes moving averages and autocorrelations, builds bootstrap samples and bootstrap errors, and allows modeling the data using Bayesian correlated constrained linear and non-linear fits. It can be scripted to allow real time visualization of results form an ongoing computation. The system is modular and it can be adapted to automating the analysis workflow of different types of MC computations

    Quantum computation and hidden variables

    Full text link
    Many physicists limit oneself to an instrumentalist description of quantum phenomena and ignore the problems of foundation and interpretation of quantum mechanics. This instrumentalist approach results to "specialization barbarism" and mass delusion concerning the problem, how a quantum computer can be made. The idea of quantum computation can be described within the limits of quantum formalism. But in order to understand how this idea can be put into practice one should realize the question: "What could the quantum formalism describe?", in spite of the absence of an universally recognized answer. Only a realization of this question and the undecided problem of quantum foundations allows to see in which quantum systems the superposition and EPR correlation could be expected. Because of the "specialization barbarism" many authors are sure that Bell proved full impossibility of any hidden-variables interpretation. Therefore it is important to emphasize that in reality Bell has restricted to validity limits of the no- hidden-variables proof and has shown that two-state quantum system can be described by hidden variables. The later means that no experimental result obtained on two-state quantum system can prove the existence of superposition and violation of the realism. One should not assume before unambiguous experimental evidence that any two-state quantum system is quantum bit. No experimental evidence of superposition of macroscopically distinct quantum states and of a quantum bit on base of superconductor structure was obtained for the present. Moreover same experimental results can not be described in the limits of the quantum formalism.Comment: 15 pages, 3 figures, The talk presented at the International Symposium "Quantum Informatics-2007" Zvenigorod, Moscow region, Russia, 200
    corecore