4,245 research outputs found

    FD-GAN: Pose-guided Feature Distilling GAN for Robust Person Re-identification

    Full text link
    Person re-identification (reID) is an important task that requires to retrieve a person's images from an image dataset, given one image of the person of interest. For learning robust person features, the pose variation of person images is one of the key challenges. Existing works targeting the problem either perform human alignment, or learn human-region-based representations. Extra pose information and computational cost is generally required for inference. To solve this issue, a Feature Distilling Generative Adversarial Network (FD-GAN) is proposed for learning identity-related and pose-unrelated representations. It is a novel framework based on a Siamese structure with multiple novel discriminators on human poses and identities. In addition to the discriminators, a novel same-pose loss is also integrated, which requires appearance of a same person's generated images to be similar. After learning pose-unrelated person features with pose guidance, no auxiliary pose information and additional computational cost is required during testing. Our proposed FD-GAN achieves state-of-the-art performance on three person reID datasets, which demonstrates that the effectiveness and robust feature distilling capability of the proposed FD-GAN.Comment: Accepted in Proceedings of 32nd Conference on Neural Information Processing Systems (NeurIPS 2018). Code available: https://github.com/yxgeee/FD-GA

    Crossing Generative Adversarial Networks for Cross-View Person Re-identification

    Full text link
    Person re-identification (\textit{re-id}) refers to matching pedestrians across disjoint yet non-overlapping camera views. The most effective way to match these pedestrians undertaking significant visual variations is to seek reliably invariant features that can describe the person of interest faithfully. Most of existing methods are presented in a supervised manner to produce discriminative features by relying on labeled paired images in correspondence. However, annotating pair-wise images is prohibitively expensive in labors, and thus not practical in large-scale networked cameras. Moreover, seeking comparable representations across camera views demands a flexible model to address the complex distributions of images. In this work, we study the co-occurrence statistic patterns between pairs of images, and propose to crossing Generative Adversarial Network (Cross-GAN) for learning a joint distribution for cross-image representations in a unsupervised manner. Given a pair of person images, the proposed model consists of the variational auto-encoder to encode the pair into respective latent variables, a proposed cross-view alignment to reduce the view disparity, and an adversarial layer to seek the joint distribution of latent representations. The learned latent representations are well-aligned to reflect the co-occurrence patterns of paired images. We empirically evaluate the proposed model against challenging datasets, and our results show the importance of joint invariant features in improving matching rates of person re-id with comparison to semi/unsupervised state-of-the-arts.Comment: 12 pages. arXiv admin note: text overlap with arXiv:1702.03431 by other author

    When Autonomous Systems Meet Accuracy and Transferability through AI: A Survey

    Full text link
    With widespread applications of artificial intelligence (AI), the capabilities of the perception, understanding, decision-making and control for autonomous systems have improved significantly in the past years. When autonomous systems consider the performance of accuracy and transferability, several AI methods, like adversarial learning, reinforcement learning (RL) and meta-learning, show their powerful performance. Here, we review the learning-based approaches in autonomous systems from the perspectives of accuracy and transferability. Accuracy means that a well-trained model shows good results during the testing phase, in which the testing set shares a same task or a data distribution with the training set. Transferability means that when a well-trained model is transferred to other testing domains, the accuracy is still good. Firstly, we introduce some basic concepts of transfer learning and then present some preliminaries of adversarial learning, RL and meta-learning. Secondly, we focus on reviewing the accuracy or transferability or both of them to show the advantages of adversarial learning, like generative adversarial networks (GANs), in typical computer vision tasks in autonomous systems, including image style transfer, image superresolution, image deblurring/dehazing/rain removal, semantic segmentation, depth estimation, pedestrian detection and person re-identification (re-ID). Then, we further review the performance of RL and meta-learning from the aspects of accuracy or transferability or both of them in autonomous systems, involving pedestrian tracking, robot navigation and robotic manipulation. Finally, we discuss several challenges and future topics for using adversarial learning, RL and meta-learning in autonomous systems

    M2M-GAN: Many-to-Many Generative Adversarial Transfer Learning for Person Re-Identification

    Full text link
    Cross-domain transfer learning (CDTL) is an extremely challenging task for the person re-identification (ReID). Given a source domain with annotations and a target domain without annotations, CDTL seeks an effective method to transfer the knowledge from the source domain to the target domain. However, such a simple two-domain transfer learning method is unavailable for the person ReID in that the source/target domain consists of several sub-domains, e.g., camera-based sub-domains. To address this intractable problem, we propose a novel Many-to-Many Generative Adversarial Transfer Learning method (M2M-GAN) that takes multiple source sub-domains and multiple target sub-domains into consideration and performs each sub-domain transferring mapping from the source domain to the target domain in a unified optimization process. The proposed method first translates the image styles of source sub-domains into that of target sub-domains, and then performs the supervised learning by using the transferred images and the corresponding annotations in source domain. As the gap is reduced, M2M-GAN achieves a promising result for the cross-domain person ReID. Experimental results on three benchmark datasets Market-1501, DukeMTMC-reID and MSMT17 show the effectiveness of our M2M-GAN

    AnonymousNet: Natural Face De-Identification with Measurable Privacy

    Full text link
    With billions of personal images being generated from social media and cameras of all sorts on a daily basis, security and privacy are unprecedentedly challenged. Although extensive attempts have been made, existing face image de-identification techniques are either insufficient in photo-reality or incapable of balancing privacy and usability qualitatively and quantitatively, i.e., they fail to answer counterfactual questions such as "is it private now?", "how private is it?", and "can it be more private?" In this paper, we propose a novel framework called AnonymousNet, with an effort to address these issues systematically, balance usability, and enhance privacy in a natural and measurable manner. The framework encompasses four stages: facial attribute estimation, privacy-metric-oriented face obfuscation, directed natural image synthesis, and adversarial perturbation. Not only do we achieve the state-of-the-arts in terms of image quality and attribute prediction accuracy, we are also the first to show that facial privacy is measurable, can be factorized, and accordingly be manipulated in a photo-realistic fashion to fulfill different requirements and application scenarios. Experiments further demonstrate the effectiveness of the proposed framework.Comment: CVPR-19 Workshop on Computer Vision: Challenges and Opportunities for Privacy and Security (CV-COPS 2019

    Domain Adaptive Person Re-Identification via Camera Style Generation and Label Propagation

    Full text link
    Unsupervised domain adaptation in person re-identification resorts to labeled source data to promote the model training on target domain, facing the dilemmas caused by large domain shift and large camera variations. The non-overlapping labels challenge that source domain and target domain have entirely different persons further increases the re-identification difficulty. In this paper, we propose a novel algorithm to narrow such domain gaps. We derive a camera style adaptation framework to learn the style-based mappings between different camera views, from the target domain to the source domain, and then we can transfer the identity-based distribution from the source domain to the target domain on the camera level. To overcome the non-overlapping labels challenge and guide the person re-identification model to narrow the gap further, an efficient and effective soft-labeling method is proposed to mine the intrinsic local structure of the target domain through building the connection between GAN-translated source domain and the target domain. Experiment results conducted on real benchmark datasets indicate that our method gets state-of-the-art results

    Sparse Label Smoothing Regularization for Person Re-Identification

    Full text link
    Person re-identification (re-id) is a cross-camera retrieval task which establishes a correspondence between images of a person from multiple cameras. Deep Learning methods have been successfully applied to this problem and have achieved impressive results. However, these methods require a large amount of labeled training data. Currently labeled datasets in person re-id are limited in their scale and manual acquisition of such large-scale datasets from surveillance cameras is a tedious and labor-intensive task. In this paper, we propose a framework that performs intelligent data augmentation and assigns partial smoothing label to generated data. Our approach first exploits the clustering property of existing person re-id datasets to create groups of similar objects that model cross-view variations. Each group is then used to generate realistic images through adversarial training. Our aim is to emphasize feature similarity between generated samples and the original samples. Finally, we assign a non-uniform label distribution to the generated samples and define a regularized loss function for training. The proposed approach tackles two problems (1) how to efficiently use the generated data and (2) how to address the over-smoothness problem found in current regularization methods. Extensive experiments on four larges cale datasets show that our regularization method significantly improves the Re-ID accuracy compared to existing methods.Comment: 13 pages, 6 figure

    Person Transfer GAN to Bridge Domain Gap for Person Re-Identification

    Full text link
    Although the performance of person Re-Identification (ReID) has been significantly boosted, many challenging issues in real scenarios have not been fully investigated, e.g., the complex scenes and lighting variations, viewpoint and pose changes, and the large number of identities in a camera network. To facilitate the research towards conquering those issues, this paper contributes a new dataset called MSMT17 with many important features, e.g., 1) the raw videos are taken by an 15-camera network deployed in both indoor and outdoor scenes, 2) the videos cover a long period of time and present complex lighting variations, and 3) it contains currently the largest number of annotated identities, i.e., 4,101 identities and 126,441 bounding boxes. We also observe that, domain gap commonly exists between datasets, which essentially causes severe performance drop when training and testing on different datasets. This results in that available training data cannot be effectively leveraged for new testing domains. To relieve the expensive costs of annotating new training samples, we propose a Person Transfer Generative Adversarial Network (PTGAN) to bridge the domain gap. Comprehensive experiments show that the domain gap could be substantially narrowed-down by the PTGAN.Comment: 10 pages, 9 figures; accepted in CVPR 201

    Joint Discriminative and Generative Learning for Person Re-identification

    Full text link
    Person re-identification (re-id) remains challenging due to significant intra-class variations across different cameras. Recently, there has been a growing interest in using generative models to augment training data and enhance the invariance to input changes. The generative pipelines in existing methods, however, stay relatively separate from the discriminative re-id learning stages. Accordingly, re-id models are often trained in a straightforward manner on the generated data. In this paper, we seek to improve learned re-id embeddings by better leveraging the generated data. To this end, we propose a joint learning framework that couples re-id learning and data generation end-to-end. Our model involves a generative module that separately encodes each person into an appearance code and a structure code, and a discriminative module that shares the appearance encoder with the generative module. By switching the appearance or structure codes, the generative module is able to generate high-quality cross-id composed images, which are online fed back to the appearance encoder and used to improve the discriminative module. The proposed joint learning framework renders significant improvement over the baseline without using generated data, leading to the state-of-the-art performance on several benchmark datasets.Comment: CVPR 2019 (Oral

    ReshapeGAN: Object Reshaping by Providing A Single Reference Image

    Full text link
    The aim of this work is learning to reshape the object in an input image to an arbitrary new shape, by just simply providing a single reference image with an object instance in the desired shape. We propose a new Generative Adversarial Network (GAN) architecture for such an object reshaping problem, named ReshapeGAN. The network can be tailored for handling all kinds of problem settings, including both within-domain (or single-dataset) reshaping and cross-domain (typically across mutiple datasets) reshaping, with paired or unpaired training data. The appearance of the input object is preserved in all cases, and thus it is still identifiable after reshaping, which has never been achieved as far as we are aware. We present the tailored models of the proposed ReshapeGAN for all the problem settings, and have them tested on 8 kinds of reshaping tasks with 13 different datasets, demonstrating the ability of ReshapeGAN on generating convincing and superior results for object reshaping. To the best of our knowledge, we are the first to be able to make one GAN framework work on all such object reshaping tasks, especially the cross-domain tasks on handling multiple diverse datasets. We present here both ablation studies on our proposed ReshapeGAN models and comparisons with the state-of-the-art models when they are made comparable, using all kinds of applicable metrics that we are aware of.Comment: 25 pages, 23 figure
    corecore