2,648 research outputs found

    Dimensionality Reduction Mappings

    Get PDF
    A wealth of powerful dimensionality reduction methods has been established which can be used for data visualization and preprocessing. These are accompanied by formal evaluation schemes, which allow a quantitative evaluation along general principles and which even lead to further visualization schemes based on these objectives. Most methods, however, provide a mapping of a priorly given finite set of points only, requiring additional steps for out-of-sample extensions. We propose a general view on dimensionality reduction based on the concept of cost functions, and, based on this general principle, extend dimensionality reduction to explicit mappings of the data manifold. This offers simple out-of-sample extensions. Further, it opens a way towards a theory of data visualization taking the perspective of its generalization ability to new data points. We demonstrate the approach based on a simple global linear mapping as well as prototype-based local linear mappings.

    On the convergence of maximum variance unfolding

    Full text link
    Maximum Variance Unfolding is one of the main methods for (nonlinear) dimensionality reduction. We study its large sample limit, providing specific rates of convergence under standard assumptions. We find that it is consistent when the underlying submanifold is isometric to a convex subset, and we provide some simple examples where it fails to be consistent
    corecore