687,553 research outputs found

    An interactive preprocessor for the NASA engine performance program

    Get PDF
    The Simplified NEPP Automated Preprocessor (SNAP), which is written to aid in the preparation of input data files for the NASA Engine Performance Program (NEPP), is described. Specifically, SNAP is a software package on the Virtual Machine operating system that prompts the NEPP user for input information via a series of menus. The data collected from these menus are assimilated into an input file suitable for the running of NEPP. SNAP acts as a user-friendly preprocessing interface for NEPP. This serves as an introduction to the SNAP software, a user's manual, a description of the program logic, and a maintenance manual for future modifications to the software

    Hypertableau Reasoning for Description Logics

    Full text link
    We present a novel reasoning calculus for the description logic SHOIQ^+---a knowledge representation formalism with applications in areas such as the Semantic Web. Unnecessary nondeterminism and the construction of large models are two primary sources of inefficiency in the tableau-based reasoning calculi used in state-of-the-art reasoners. In order to reduce nondeterminism, we base our calculus on hypertableau and hyperresolution calculi, which we extend with a blocking condition to ensure termination. In order to reduce the size of the constructed models, we introduce anywhere pairwise blocking. We also present an improved nominal introduction rule that ensures termination in the presence of nominals, inverse roles, and number restrictions---a combination of DL constructs that has proven notoriously difficult to handle. Our implementation shows significant performance improvements over state-of-the-art reasoners on several well-known ontologies

    Introduction to the TPLP special issue, logic programming in databases: From Datalog to semantic-web rules

    Get PDF
    Much has happened in data and knowledge base research since the introduction of the relational model in Codd (1970) and its strong logical foundations influence its advances ever since. Logic has been a common ground where Database and Artificial Intelligence research competed and collaborated with each other for a long time (Abiteboul et al. 1995). The product of this joint effort has been a set of logic-based formalisms, such as the Relational Calculus (Codd 1970), Datalog (Ceri et al. 1990), Description Logics (Baader et al. 2007), etc., capturing not only the structure but also the semantics of data in an explicit way, thus enabling complex inference procedures.This special issue contains three rigorously reviewed articles addressing problems that span from Query Answering to Data Mining. All these contributions have their roots in the foundational formalisms of Data and Knowledge Bases such as Logic Programming, Description Logic and Hybrid Logics, representing a clear example of the effort that the Database and the Semantic-Web communities are producing to bridge the various schools of thinking in modern Data and Knowledge Management

    Integrating Reasoning Services for Description Logics with Cardinality Constraints with Numerical Optimization Techniques

    Get PDF
    Recent research in the field of Description Logic (DL) investigated the complexity of the satisfiability problem for description logics that are obtained by enriching the well-known DL ALCQ with more complex set and cardinality constraints over role successors. The algorithms that have been proposed so far, despite providing worst-case optimal decision procedures for the concept satisfiability problem (both without and with a terminology) lack the efficiency needed to obtain usable implementations. In particular, the algorithm for the case without terminology is non-deterministic and the one for the case with a terminology is also best-case exponential. The goal of this thesis is to use well-established techniques from the field of numerical optimization, such as column generation, in order to obtain more practical algorithms. As a starting point, efficient approaches for dealing with counting quantifiers over unary predicates based on SAT-based column generation should be considered.:1. Introduction 2. Preliminaries 2.1. First-order logic 2.2. Linear Programming 2.3. The description logic ALCQ 2.4. Extending ALCQ with expressive role successor constraints 2.4.1. The logic QFBAPA 2.4.2 The description logic ALCSCC 3. The description logic ALCCQU 3.1. A normal form for ALCCQU 3.2. ALCQt as an equivalent formulation of ALCCQU 3.2.1. ALCQt is a sublogic of ALCCQU 3.2.2. ALCCQU is a sublogic of ALCQt 3.3. Model-theoretic characterization of ALCQt 3.3.1. ALCQt-bisimulation and invariance for ALCQt 3.3.2. Characterization of ALCQt concept descriptions 3.4. Expressive power 3.4.1. Relative expressivity of ALCQ and ALCCQU 3.4.2. Relative expressivity of ALCCQU and ALCSCC 3.5. ALCCQU as the first-order fragment of ALCSCC 4. Concept satisfiability in ALCCQU 4.1. The first-order fragment CQU 4.2. Column generation with SAT oracle 4.2.1. Column generation and CQU 4.2.2. From linear inequalities to propositional formulae 4.2.3. Column generation and ALCCQU 4.3. Branch-and-Price for ALCCQU concept satisfiability 4.4. Correctness of ALCCQU-BB 4.4.1. Complexity of ALCCQU-BB 5. Conclusion - Bibliograph

    Dispositions and the Infectious Disease Ontology

    Get PDF
    This paper addresses the use of dispositions in the Infectious Disease Ontology (IDO). IDO is an ontology constructed according to the principles of the Open Biomedical Ontology (OBO) Foundry and uses the Basic Formal Ontology (BFO) as an upper ontology. After providing a brief introduction to disposition types in BFO and IDO, we discuss three general techniques for representing combinations of dispositions under the headings blocking dispositions, complementary dispositions, and collective dispositions. Motivating examples for each combination of dispositions is given along with a specific use case in IDO. Description logic restrictions are used to formalize statements relating to these combinations

    Predicate logic unplugged

    Get PDF
    this paper we describe the syntax and semantics of a description language for underspecified semantic representations. This concept is discussed in general and in particular applied to Predicate Logic and Discourse Representation Theory. The reason for exploring underspecified representations as suitable semantic representations for natural language expressions emerges directly from practical natural language processing applications. The so-called Combinatorial Explosion Puzzle, a well known problem in this area, can succesfully be tackled by using underspecified representations. The source of this problem, scopal ambiguities in natural language expressions, is discussed in section 2. The core of the paper presents Hole Semantics. This is a general proposal for a framework, in principle suitable for any logic, where underspecified representations play a central role. There is a clear separation between the object language (the logical language one is interested in) and the meta language (the language that describes and interprets underspecified structures). It has been noted by various authors that the meaning of an underspecified semantic representation cannot be expressed in terms of a disjunction of denotations, but rather as a set of denotations (cf. Poesio 1994). We support this view, and use it as underlying principle for the definition of the semantic interpretation function of underspecified structures. Section 3 is an informal introduction to Hole Semantics, and in section 4 things are formally defined. In section 5 we apply Hole Semantics to Predicate Logic, resulting in an "unplugged" version of (static and dynamic) Predicate Logic. In section 6 we show that this idea easily carries over to Discourse Representation Structures. A lot of attention has been paid..

    Reasoning in Description Logic Ontologies for Privacy Management

    Get PDF
    A rise in the number of ontologies that are integrated and distributed in numerous application systems may provide the users to access the ontologies with different privileges and purposes. In this situation, preserving confidential information from possible unauthorized disclosures becomes a critical requirement. For instance, in the clinical sciences, unauthorized disclosures of medical information do not only threaten the system but also, most importantly, the patient data. Motivated by this situation, this thesis initially investigates a privacy problem, called the identity problem, where the identity of (anonymous) objects stored in Description Logic ontologies can be revealed or not. Then, we consider this problem in the context of role-based access control to ontologies and extend it to the problem asking if the identity belongs to a set of known individuals of cardinality smaller than the number k. If it is the case that some confidential information of persons, such as their identity, their relationships or their other properties, can be deduced from an ontology, which implies that some privacy policy is not fulfilled, then one needs to repair this ontology such that the modified one complies with the policies and preserves the information from the original ontology as much as possible. The repair mechanism we provide is called gentle repair and performed via axiom weakening instead of axiom deletion which was commonly used in classical approaches of ontology repair. However, policy compliance itself is not enough if there is a possible attacker that can obtain relevant information from other sources, which together with the modified ontology still violates the privacy policies. Safety property is proposed to alleviate this issue and we investigate this in the context of privacy-preserving ontology publishing. Inference procedures to solve those privacy problems and additional investigations on the complexity of the procedures, as well as the worst-case complexity of the problems, become the main contributions of this thesis.:1. Introduction 1.1 Description Logics 1.2 Detecting Privacy Breaches in Information System 1.3 Repairing Information Systems 1.4 Privacy-Preserving Data Publishing 1.5 Outline and Contribution of the Thesis 2. Preliminaries 2.1 Description Logic ALC 2.1.1 Reasoning in ALC Ontologies 2.1.2 Relationship with First-Order Logic 2.1.3. Fragments of ALC 2.2 Description Logic EL 2.3 The Complexity of Reasoning Problems in DLs 3. The Identity Problem and Its Variants in Description Logic Ontologies 3.1 The Identity Problem 3.1.1 Description Logics with Equality Power 3.1.2 The Complexity of the Identity Problem 3.2 The View-Based Identity Problem 3.3 The k-Hiding Problem 3.3.1 Upper Bounds 3.3.2 Lower Bound 4. Repairing Description Logic Ontologies 4.1 Repairing Ontologies 4.2 Gentle Repairs 4.3 Weakening Relations 4.4 Weakening Relations for EL Axioms 4.4.1 Generalizing the Right-Hand Sides of GCIs 4.4.2 Syntactic Generalizations 4.5 Weakening Relations for ALC Axioms 4.5.1 Generalizations and Specializations in ALC w.r.t. Role Depth 4.5.2 Syntactical Generalizations and Specializations in ALC 5. Privacy-Preserving Ontology Publishing for EL Instance Stores 5.1 Formalizing Sensitive Information in EL Instance Stores 5.2 Computing Optimal Compliant Generalizations 5.3 Computing Optimal Safe^{\exists} Generalizations 5.4 Deciding Optimality^{\exists} in EL Instance Stores 5.5 Characterizing Safety^{\forall} 5.6 Optimal P-safe^{\forall} Generalizations 5.7 Characterizing Safety^{\forall\exists} and Optimality^{\forall\exists} 6. Privacy-Preserving Ontology Publishing for EL ABoxes 6.1 Logical Entailments in EL ABoxes with Anonymous Individuals 6.2 Anonymizing EL ABoxes 6.3 Formalizing Sensitive Information in EL ABoxes 6.4 Compliance and Safety for EL ABoxes 6.5 Optimal Anonymizers 7. Conclusion 7.1 Main Results 7.2 Future Work Bibliograph
    • …
    corecore