311,572 research outputs found

    Secure and Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks

    Get PDF
    This chapter discusses the need of security and privacy protection mechanisms in aggregation protocols used in wireless sensor networks (WSN). It presents a comprehensive state of the art discussion on the various privacy protection mechanisms used in WSNs and particularly focuses on the CPDA protocols proposed by He et al. (INFOCOM 2007). It identifies a security vulnerability in the CPDA protocol and proposes a mechanism to plug that vulnerability. To demonstrate the need of security in aggregation process, the chapter further presents various threats in WSN aggregation mechanisms. A large number of existing protocols for secure aggregation in WSN are discussed briefly and a protocol is proposed for secure aggregation which can detect false data injected by malicious nodes in a WSN. The performance of the protocol is also presented. The chapter concludes while highlighting some future directions of research in secure data aggregation in WSNs.Comment: 32 pages, 7 figures, 3 table

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    Differential Privacy for Relational Algebra: Improving the Sensitivity Bounds via Constraint Systems

    Get PDF
    Differential privacy is a modern approach in privacy-preserving data analysis to control the amount of information that can be inferred about an individual by querying a database. The most common techniques are based on the introduction of probabilistic noise, often defined as a Laplacian parametric on the sensitivity of the query. In order to maximize the utility of the query, it is crucial to estimate the sensitivity as precisely as possible. In this paper we consider relational algebra, the classical language for queries in relational databases, and we propose a method for computing a bound on the sensitivity of queries in an intuitive and compositional way. We use constraint-based techniques to accumulate the information on the possible values for attributes provided by the various components of the query, thus making it possible to compute tight bounds on the sensitivity.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    Hierarchical Knowledge-Gradient for Sequential Sampling

    Get PDF
    We consider the problem of selecting the best of a finite but very large set of alternatives. Each alternative may be characterized by a multi-dimensional vector and has independent normal rewards. This problem arises in various settings such as (i) ranking and selection, (ii) simulation optimization where the unknown mean of each alternative is estimated with stochastic simulation output, and (iii) approximate dynamic programming where we need to estimate values based on Monte-Carlo simulation. We use a Bayesian probability model for the unknown reward of each alternative and follow a fully sequential sampling policy called the knowledge-gradient policy. This policy myopically optimizes the expected increment in the value of sampling information in each time period. Because the number of alternatives is large, we propose a hierarchical aggregation technique that uses the common features shared by alternatives to learn about many alternatives from even a single measurement, thus greatly reducing the measurement effort required. We demonstrate how this hierarchical knowledge-gradient policy can be applied to efficiently maximize a continuous function and prove that this policy finds a globally optimal alternative in the limit
    • …
    corecore