50 research outputs found

    A Review on Advances in Intra-operative Imaging for Surgery and Therapy: Imagining the Operating Room of the Future

    Get PDF
    none4openZaffino, Paolo; Moccia, Sara; De Momi, Elena; Spadea, Maria FrancescaZaffino, Paolo; Moccia, Sara; De Momi, Elena; Spadea, Maria Francesc

    Intraoperative tissue classification methods in orthopedic and neurological surgeries: A systematic review

    Full text link
    Accurate tissue differentiation during orthopedic and neurological surgeries is critical, given that such surgeries involve operations on or in the vicinity of vital neurovascular structures and erroneous surgical maneuvers can lead to surgical complications. By now, the number of emerging technologies tackling the problem of intraoperative tissue classification methods is increasing. Therefore, this systematic review paper intends to give a general overview of existing technologies. The review was done based on the PRISMA principle and two databases: PubMed and IEEE Xplore. The screening process resulted in 60 full-text papers. The general characteristics of the methodology from extracted papers included data processing pipeline, machine learning methods if applicable, types of tissues that can be identified with them, phantom used to conduct the experiment, and evaluation results. This paper can be useful in identifying the problems in the current status of the state-of-the-art intraoperative tissue classification methods and designing new enhanced techniques

    Information Extraction Techniques in Hyperspectral Imaging Biomedical Applications

    Get PDF
    Hyperspectral imaging (HSI) is a technology able to measure information about the spectral reflectance or transmission of light from the surface. The spectral data, usually within the ultraviolet and infrared regions of the electromagnetic spectrum, provide information about the interaction between light and different materials within the image. This fact enables the identification of different materials based on such spectral information. In recent years, this technology is being actively explored for clinical applications. One of the most relevant challenges in medical HSI is the information extraction, where image processing methods are used to extract useful information for disease detection and diagnosis. In this chapter, we provide an overview of the information extraction techniques for HSI. First, we introduce the background of HSI, and the main motivations of its usage for medical applications. Second, we present information extraction techniques based on both light propagation models within tissue and machine learning approaches. Then, we survey the usage of such information extraction techniques in HSI biomedical research applications. Finally, we discuss the main advantages and disadvantages of the most commonly used image processing approaches and the current challenges in HSI information extraction techniques in clinical applications

    Intelligent ultra-light deep learning model for multi-class brain tumor detection

    Get PDF
    The diagnosis and surgical resection using Magnetic Resonance (MR) images in brain tumors is a challenging task to minimize the neurological defects after surgery owing to the non-linear nature of the size, shape, and textural variation. Radiologists, clinical experts, and brain surgeons examine brain MRI scans using the available methods, which are tedious, error-prone, time-consuming, and still exhibit positional accuracy up to 2−3 mm, which is very high in the case of brain cells. In this context, we propose an automated Ultra-Light Brain Tumor Detection (UL-BTD) system based on a novel Ultra-Light Deep Learning Architecture (UL-DLA) for deep features, integrated with highly distinctive textural features, extracted by Gray Level Co-occurrence Matrix (GLCM). It forms a Hybrid Feature Space (HFS), which is used for tumor detection using Support Vector Machine (SVM), culminating in high prediction accuracy and optimum false negatives with limited network size to fit within the average GPU resources of a modern PC system. The objective of this study is to categorize multi-class publicly available MRI brain tumor datasets with a minimum time thus real-time tumor detection can be carried out without compromising accuracy. Our proposed framework includes a sensitivity analysis of image size, One-versus-All and One-versus-One coding schemes with stringent efforts to assess the complexity and reliability performance of the proposed system with K-fold cross-validation as a part of the evaluation protocol. The best generalization achieved using SVM has an average detection rate of 99.23% (99.18%, 98.86%, and 99.67%), and F-measure of 0.99 (0.99, 0.98, and 0.99) for (glioma, meningioma, and pituitary tumors), respectively. Our results have been found to improve the state-of-the-art (97.30%) by 2%, indicating that the system exhibits capability for translation in modern hospitals during real-time surgical brain applications. The method needs 11.69 ms with an accuracy of 99.23% compared to 15 ms achieved by the state-of-the-art to earlier to detect tumors on a test image without any dedicated hardware providing a route for a desktop application in brain surgery

    Current and Future Advances in Surgical Therapy for Pituitary Adenoma

    Get PDF
    The vital physiological role of the pituitary gland, alongside its proximal critical neurovascular structures means pituitary adenomas cause significant morbidity or mortality. Whilst enormous advancements have been made in the surgical care of pituitary adenomas, treatment failure and recurrence remain challenges. To meet these clinical challenges, there has been an enormous expansion of novel medical technologies (e.g. endoscopy, advanced imaging, artificial intelligence). These innovations have the potential to benefit each step of the patient journey, and ultimately, drive improved outcomes. Earlier and more accurate diagnosis addresses this in part. Analysis of novel patient data sets, such as automated facial analysis or natural language processing of medical records holds potential in achieving an earlier diagnosis. After diagnosis, treatment decision-making and planning will benefit from radiomics and multimodal machine learning models. Surgical safety and effectiveness will be transformed by smart simulation methods for trainees. Next-generation imaging techniques and augmented reality will enhance surgical planning and intraoperative navigation. Similarly, the future armamentarium of pituitary surgeons, including advanced optical devices, smart instruments and surgical robotics, will augment the surgeon's abilities. Intraoperative support to team members will benefit from a surgical data science approach, utilising machine learning analysis of operative videos to improve patient safety and orientate team members to a common workflow. Postoperatively, early detection of individuals at risk of complications and prediction of treatment failure through neural networks of multimodal datasets will support earlier intervention, safer hospital discharge, guide follow-up and adjuvant treatment decisions. Whilst advancements in pituitary surgery hold promise to enhance the quality of care, clinicians must be the gatekeepers of technological translation, ensuring systematic assessment of risk and benefit. In doing so, the synergy between these innovations can be leveraged to drive improved outcomes for patients of the future
    corecore