104,251 research outputs found

    Unsupervised Learning from Narrated Instruction Videos

    Full text link
    We address the problem of automatically learning the main steps to complete a certain task, such as changing a car tire, from a set of narrated instruction videos. The contributions of this paper are three-fold. First, we develop a new unsupervised learning approach that takes advantage of the complementary nature of the input video and the associated narration. The method solves two clustering problems, one in text and one in video, applied one after each other and linked by joint constraints to obtain a single coherent sequence of steps in both modalities. Second, we collect and annotate a new challenging dataset of real-world instruction videos from the Internet. The dataset contains about 800,000 frames for five different tasks that include complex interactions between people and objects, and are captured in a variety of indoor and outdoor settings. Third, we experimentally demonstrate that the proposed method can automatically discover, in an unsupervised manner, the main steps to achieve the task and locate the steps in the input videos.Comment: Appears in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016). 21 page

    Extracting user spatio-temporal profiles from location based social networks

    Get PDF
    Report de RecercaLocation Based Social Networks (LBSN) like Twitter or Instagram are a good source for user spatio-temporal behavior. These social network provide a low rate sampling of user's location information during large intervals of time that can be used to discover complex behaviors, including mobility profiles, points of interest or unusual events. This information is important for different domains like mobility route planning, touristic recommendation systems or city planning. Other approaches have used the data from LSBN to categorize areas of a city depending on the categories of the places that people visit or to discover user behavioral patterns from their visits. The aim of this paper is to analyze how the spatio-temporal behavior of a large number of users in a well limited geographical area can be segmented in different profiles. These behavioral profiles are obtained by means of clustering algorithms that show the different behaviors that people have when living and visiting a city. The data analyzed was obtained from the public data feeds of Twitter and Instagram inside the area of the city of Barcelona for a period of several months. The analysis of these data shows that these kind of algorithms can be successfully applied to data from any city (or any general area) to discover useful profiles that can be described on terms of the city singular places and areas and their temporal relationships. These profiles can be used as a basis for making decisions in different application domains, specially those related with mobility inside and outside a city.Preprin

    Dynamic Metric Learning from Pairwise Comparisons

    Full text link
    Recent work in distance metric learning has focused on learning transformations of data that best align with specified pairwise similarity and dissimilarity constraints, often supplied by a human observer. The learned transformations lead to improved retrieval, classification, and clustering algorithms due to the better adapted distance or similarity measures. Here, we address the problem of learning these transformations when the underlying constraint generation process is nonstationary. This nonstationarity can be due to changes in either the ground-truth clustering used to generate constraints or changes in the feature subspaces in which the class structure is apparent. We propose Online Convex Ensemble StrongLy Adaptive Dynamic Learning (OCELAD), a general adaptive, online approach for learning and tracking optimal metrics as they change over time that is highly robust to a variety of nonstationary behaviors in the changing metric. We apply the OCELAD framework to an ensemble of online learners. Specifically, we create a retro-initialized composite objective mirror descent (COMID) ensemble (RICE) consisting of a set of parallel COMID learners with different learning rates, demonstrate RICE-OCELAD on both real and synthetic data sets and show significant performance improvements relative to previously proposed batch and online distance metric learning algorithms.Comment: to appear Allerton 2016. arXiv admin note: substantial text overlap with arXiv:1603.0367
    • …
    corecore