5,122 research outputs found

    Cooperative sensing of spectrum opportunities

    Get PDF
    Reliability and availability of sensing information gathered from local spectrum sensing (LSS) by a single Cognitive Radio is strongly affected by the propagation conditions, period of sensing, and geographical position of the device. For this reason, cooperative spectrum sensing (CSS) was largely proposed in order to improve LSS performance by using cooperation between Secondary Users (SUs). The goal of this chapter is to provide a general analysis on CSS for cognitive radio networks (CRNs). Firstly, the theoretical system model for centralized CSS is introduced, together with a preliminary discussion on several fusion rules and operative modes. Moreover, three main aspects of CSS that substantially differentiate the theoretical model from realistic application scenarios are analyzed: (i) the presence of spatiotemporal correlation between decisions by different SUs; (ii) the possible mobility of SUs; and (iii) the nonideality of the control channel between the SUs and the Fusion Center (FC). For each aspect, a possible practical solution for network organization is presented, showing that, in particular for the first two aspects, cluster-based CSS, in which sensing SUs are properly chosen, could mitigate the impact of such realistic assumptions

    Doctor of Philosophy

    Get PDF
    dissertationRecent advancements in mobile devices - such as Global Positioning System (GPS), cellular phones, car navigation system, and radio-frequency identification (RFID) - have greatly influenced the nature and volume of data about individual-based movement in space and time. Due to the prevalence of mobile devices, vast amounts of mobile objects data are being produced and stored in databases, overwhelming the capacity of traditional spatial analytical methods. There is a growing need for discovering unexpected patterns, trends, and relationships that are hidden in the massive mobile objects data. Geographic visualization (GVis) and knowledge discovery in databases (KDD) are two major research fields that are associated with knowledge discovery and construction. Their major research challenges are the integration of GVis and KDD, enhancing the ability to handle large volume mobile objects data, and high interactivity between the computer and users of GVis and KDD tools. This dissertation proposes a visualization toolkit to enable highly interactive visual data exploration for mobile objects datasets. Vector algebraic representation and online analytical processing (OLAP) are utilized for managing and querying the mobile object data to accomplish high interactivity of the visualization tool. In addition, reconstructing trajectories at user-defined levels of temporal granularity with time aggregation methods allows exploration of the individual objects at different levels of movement generality. At a given level of generality, individual paths can be combined into synthetic summary paths based on three similarity measures, namely, locational similarity, directional similarity, and geometric similarity functions. A visualization toolkit based on the space-time cube concept exploits these functionalities to create a user-interactive environment for exploring mobile objects data. Furthermore, the characteristics of visualized trajectories are exported to be utilized for data mining, which leads to the integration of GVis and KDD. Case studies using three movement datasets (personal travel data survey in Lexington, Kentucky, wild chicken movement data in Thailand, and self-tracking data in Utah) demonstrate the potential of the system to extract meaningful patterns from the otherwise difficult to comprehend collections of space-time trajectories

    10042 Abstracts Collection -- Semantic Challenges in Sensor Networks

    Get PDF
    From 24.01. to 29.01.2010, the Dagstuhl Seminar 10042 ``Semantic Challenges in Sensor Networks \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Correlated multi-streaming in distributed interactive multimedia systems

    Get PDF
    Distributed Interactive Multimedia Environments (DIMEs) enable geographically distributed people to interact with each other in a joint media-rich virtual environment for a wide range of activities, such as art performance, medical consultation, sport training, etc. The real-time collaboration is made possible by exchanging a set of multi-modal sensory streams over the network in real time. The characterization and evaluation of such multi-stream interactive environments is challenging because the traditional Quality of Service metrics (e.g., delay, jitter) are limited to a per stream basis. In this work, we present a novel ???Bundle of Streams??? concept to de???ne correlated multi-streams in DIMEs and present new cyber-physical, spatio-temporal QoS metrics to measure QoS over bundle of streams. We realize Bundle of Streams concept by presenting a novel paradigm of Bundle Streaming as a Service (SAS). We propose and develop SAS Kernel, a generic, distributed, modular and highly ???exible streaming kernel realizing SAS concept. We validate the Bundle of Streams model by comparing the QoS performance of bundle of streams over different transport protocols in a 3D tele-immersive testbed. Also, further experiments demonstrate that the SAS Kernel incurs low overhead in delay, CPU, and bandwidth demands

    Virtual geographic environments in socio-environmental modeling: a fancy distraction or a key to communication?

    Get PDF
    Modeling and simulation are recognized as effective tools for management and decision support across various disciplines; however, poor communication of results to the end users is a major obstacle for properly using and understanding model output. Visualizations can play an essential role in making modeling results accessible for management and decision-making. Virtual reality (VR) and virtual geographic environments (VGEs) are popular and potentially very rewarding ways to visualize socio-environmental models. However, there is a fundamental conflict between abstraction and realism: models are goal-driven, and created to simplify reality and to focus on certain crucial aspects of the system; VR, in the meanwhile, by definition, attempts to replicate reality as closely as possible. This elevated realism may add to the complexity curse in modeling, and the message might be diluted by too many (background) details. This is also connected to information overload and cognitive load. Moreover, modeling is always associated with the treatment of uncertainty–something difficult to present in VR. In this paper, we examine the use of VR and, specifically, VGEs in socio-environmental modeling, and discuss how VGEs and simulation modeling can be married in a mutually beneficial way that makes VGEs more effective for users, while enhancing simulation models

    Videos in Context for Telecommunication and Spatial Browsing

    Get PDF
    The research presented in this thesis explores the use of videos embedded in panoramic imagery to transmit spatial and temporal information describing remote environments and their dynamics. Virtual environments (VEs) through which users can explore remote locations are rapidly emerging as a popular medium of presence and remote collaboration. However, capturing visual representation of locations to be used in VEs is usually a tedious process that requires either manual modelling of environments or the employment of specific hardware. Capturing environment dynamics is not straightforward either, and it is usually performed through specific tracking hardware. Similarly, browsing large unstructured video-collections with available tools is difficult, as the abundance of spatial and temporal information makes them hard to comprehend. At the same time, on a spectrum between 3D VEs and 2D images, panoramas lie in between, as they offer the same 2D images accessibility while preserving 3D virtual environments surrounding representation. For this reason, panoramas are an attractive basis for videoconferencing and browsing tools as they can relate several videos temporally and spatially. This research explores methods to acquire, fuse, render and stream data coming from heterogeneous cameras, with the help of panoramic imagery. Three distinct but interrelated questions are addressed. First, the thesis considers how spatially localised video can be used to increase the spatial information transmitted during video mediated communication, and if this improves quality of communication. Second, the research asks whether videos in panoramic context can be used to convey spatial and temporal information of a remote place and the dynamics within, and if this improves users' performance in tasks that require spatio-temporal thinking. Finally, the thesis considers whether there is an impact of display type on reasoning about events within videos in panoramic context. These research questions were investigated over three experiments, covering scenarios common to computer-supported cooperative work and video browsing. To support the investigation, two distinct video+context systems were developed. The first telecommunication experiment compared our videos in context interface with fully-panoramic video and conventional webcam video conferencing in an object placement scenario. The second experiment investigated the impact of videos in panoramic context on quality of spatio-temporal thinking during localization tasks. To support the experiment, a novel interface to video-collection in panoramic context was developed and compared with common video-browsing tools. The final experimental study investigated the impact of display type on reasoning about events. The study explored three adaptations of our video-collection interface to three display types. The overall conclusion is that videos in panoramic context offer a valid solution to spatio-temporal exploration of remote locations. Our approach presents a richer visual representation in terms of space and time than standard tools, showing that providing panoramic contexts to video collections makes spatio-temporal tasks easier. To this end, videos in context are suitable alternative to more difficult, and often expensive solutions. These findings are beneficial to many applications, including teleconferencing, virtual tourism and remote assistance
    • …
    corecore