7,045 research outputs found

    Constraint reasoning for differential models

    Get PDF
    The basic motivation of this work was the integration of biophysical models within the interval constraints framework for decision support. Comparing the major features of biophysical models with the expressive power of the existing interval constraints framework, it was clear that the most important inadequacy was related with the representation of differential equations. System dynamics is often modelled through differential equations but there was no way of expressing a differential equation as a constraint and integrate it within the constraints framework. Consequently, the goal of this work is focussed on the integration of ordinary differential equations within the interval constraints framework, which for this purpose is extended with the new formalism of Constraint Satisfaction Differential Problems. Such framework allows the specification of ordinary differential equations, together with related information, by means of constraints, and provides efficient propagation techniques for pruning the domains of their variables. This enabled the integration of all such information in a single constraint whose variables may subsequently be used in other constraints of the model. The specific method used for pruning its variable domains can then be combined with the pruning methods associated with the other constraints in an overall propagation algorithm for reducing the bounds of all model variables. The application of the constraint propagation algorithm for pruning the variable domains, that is, the enforcement of local-consistency, turned out to be insufficient to support decision in practical problems that include differential equations. The domain pruning achieved is not, in general, sufficient to allow safe decisions and the main reason derives from the non-linearity of the differential equations. Consequently, a complementary goal of this work proposes a new strong consistency criterion, Global Hull-consistency, particularly suited to decision support with differential models, by presenting an adequate trade-of between domain pruning and computational effort. Several alternative algorithms are proposed for enforcing Global Hull-consistency and, due to their complexity, an effort was made to provide implementations able to supply any-time pruning results. Since the consistency criterion is dependent on the existence of canonical solutions, it is proposed a local search approach that can be integrated with constraint propagation in continuous domains and, in particular, with the enforcing algorithms for anticipating the finding of canonical solutions. The last goal of this work is the validation of the approach as an important contribution for the integration of biophysical models within decision support. Consequently, a prototype application that integrated all the proposed extensions to the interval constraints framework is developed and used for solving problems in different biophysical domains

    Evaluation of the effectiveness of the interval computation method to simulate the dynamic behavior of subdefinite system: application on an active suspension system

    Get PDF
    International audienceA new design approach based on methods by intervals adapted to the integration of the simulation step at the earliest stage of preliminary design for dynamic systems is proposed in this study. The main idea consists on using the interval computation method to make a simulation by intervals in order to minimize the number of simulations which allow obtaining a set of solutions instead of a single one. These intervals represent the domains of possible values for the design parameters of the subdefinite system. So the parameterized model of the system is solved by interval. This avoids launching n simulations with n values for each design parameter. The proposed method is evaluated by several tests on a scalable numerical example. It has been applied to solve parameterized differential equations of a Macpher-son suspension system and to study its dynamic behavior in its passive and active form. The dynamic model of the active suspension is nonlinear but linearisable. It is transformed into a parameterized state equation by intervals. The solution to this state equation is given in the form of a matrix exponential. Three digital implementations of exponential have been tested to obtain convergent results. Simulations results are presented and discussed

    Some numerical methods for solving stochastic impulse control in natural gas storage facilities

    Get PDF
    The valuation of gas storage facilities is characterized as a stochastic impulse control problem with finite horizon resulting in Hamilton-Jacobi-Bellman (HJB) equations for the value function. In this context the two catagories of solving schemes for optimal switching are discussed in a stochastic control framework. We reviewed some numerical methods which include approaches related to partial differential equations (PDEs), Markov chain approximation, nonparametric regression, quantization method and some practitioners’ methods. This paper considers optimal switching problem arising in valuation of gas storage contracts for leasing the storage facilities, and investigates the recent developments as well as their advantages and disadvantages of each scheme based on dynamic programming principle (DPP

    On Continuation Methods for Non-Linear Bi-Objective Optimization: Certified Interval-Based Approach

    Get PDF
    The global optimization of constrained Non-Linear Bi-Objective Optimization problems (MO) aims at covering their Pareto-optimal front which is in general a manifold in R^2. Continuation methods can help in this context as they can follow a continuous component of this front once an initial point on it is provided. They constitute somehow a generalization of the classical scalarizing framework which transforms the bi-objective problem into a parametric mono-objective problem. Recent works have shown that they can play a key role in global algorithms dedicated to bi-objective problems, e.g. population based algorithms, where they allow discovering large portions of locally Pareto optimal vectors, which turns out to strongly support diversification. In this paper, we provide a survey on continuation techniques in global optimization methods for MO, which allow discovering large portions of locally Pareto-optimal solutions. We also propose a rigorous active set management strategy on top of a previously proposed certified continuation method based on interval analysis, and illustrate it on a challenging bi-objective problem

    Online Learning for Ground Trajectory Prediction

    Get PDF
    This paper presents a model based on an hybrid system to numerically simulate the climbing phase of an aircraft. This model is then used within a trajectory prediction tool. Finally, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimization algorithm is used to tune five selected parameters, and thus improve the accuracy of the model. Incorporated within a trajectory prediction tool, this model can be used to derive the order of magnitude of the prediction error over time, and thus the domain of validity of the trajectory prediction. A first validation experiment of the proposed model is based on the errors along time for a one-time trajectory prediction at the take off of the flight with respect to the default values of the theoretical BADA model. This experiment, assuming complete information, also shows the limit of the model. A second experiment part presents an on-line trajectory prediction, in which the prediction is continuously updated based on the current aircraft position. This approach raises several issues, for which improvements of the basic model are proposed, and the resulting trajectory prediction tool shows statistically significantly more accurate results than those of the default model.Comment: SESAR 2nd Innovation Days (2012

    Gauss-Newton Runge-Kutta Integration for Efficient Discretization of Optimal Control Problems with Long Horizons and Least-Squares Costs

    Full text link
    This work proposes an efficient treatment of continuous-time optimal control problem (OCP) with long horizons and nonlinear least-squares costs. The Gauss-Newton Runge-Kutta (GNRK) integrator is presented which provides a high-order cost integration. Crucially, the Hessian of the cost terms required within an SQP-type algorithm is approximated with a Gauss-Newton Hessian. Moreover, L2 penalty formulations for constraints are shown to be particularly effective for optimization with GNRK. An efficient implementation of GNRK is provided in the open-source software framework acados. We demonstrate the effectiveness of the proposed approach and its implementation on an illustrative example showing a reduction of relative suboptimality by a factor greater than 10 while increasing the runtime by only 10 %.Comment: 7 pages, 3 Figures, submitted to ECC 202

    Fuzzy qualitative simulation and diagnosis of continuous dynamic systems.

    Get PDF
    • …
    corecore