510 research outputs found

    Managing evolution and change in web-based teaching and learning environments

    Get PDF
    The state of the art in information technology and educational technologies is evolving constantly. Courses taught are subject to constant change from organisational and subject-specific reasons. Evolution and change affect educators and developers of computer-based teaching and learning environments alike – both often being unprepared to respond effectively. A large number of educational systems are designed and developed without change and evolution in mind. We will present our approach to the design and maintenance of these systems in rapidly evolving environments and illustrate the consequences of evolution and change for these systems and for the educators and developers responsible for their implementation and deployment. We discuss various factors of change, illustrated by a Web-based virtual course, with the objective of raising an awareness of this issue of evolution and change in computer-supported teaching and learning environments. This discussion leads towards the establishment of a development and management framework for teaching and learning systems

    Communicating During Emergencies: Toward Interoperability and Effective Information Management

    Get PDF
    The suboptimal state of communications technology used by public safety agencies has emerged as a high profile political issue. In most cases, public safety agencies are able only to communicate using antiquated networks, engineered solely for providing voice communications and unable to interoperate beyond a select number of users. This type of system fails to provide the type of economies of scale, network flexibility, or the broader functionalities routinely used by the military and private sector enterprises. The challenge facing policymakers is thus how to develop a next generation architecture for public safety and spur adoption of a new set of technologies that provide far greater functionality than today\u27s systems as well as interoperate with a broad array of organizations involved in emergency response. To change the culture and realities of public safety communications, this Article calls on policymakers to develop a new architecture for the use of information and communications technologies and provide a framework for leadership to transition to a next generation system for public safety communications. Such a culture change would include not only an embrace of new technologies, but a new framework for technology leadership - at the state or regional level - that spurs decisionmaking in a coordinated fashion (and not through ad hoc decisions by over 50,000 different local agencies). In short, this Article explains what new technologies can transform public safety communications and what intergovernmental relations strategy will be necessary to facilitate the implementation of such technologies

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Strategic Roadmaps and Implementation Actions for ICT in Construction

    Get PDF

    Service-oriented infrastructure to support the control, monitoring and management of a shop floor system

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresService-oriented Architecture (SOA) paradigm is becoming a broadly deployed standard for business and enterprise integration. It continuously spreads across the distinct layers of the enterprise organization and disparate domains of application, envisioning a unified communication solution. Service-oriented approaches are also entering the industrial automation domain in a top-down way. The recent application at device level has a direct impact on how industrial automation deployments will evolve. Similarly to other domains, the crescent ubiquity of smart devices is raising important lifecycle concerns related to device control, monitoring and management. From initial setup and deployment to system lifecycle monitoring and evolution, each device needs to be taken into account and to be easily reachable. The current work includes the specification and development of a modular, adaptive and open infrastructure to support the control, monitoring and management of devices and services in an industrial automation environment, such as a shop floor system. A collection of tools and services to be comprised in this same infrastructure will also be researched and implemented. Moreover, the main implementation focuses on a SOA-based infrastructure comprising SemanticWeb concepts to enhance the process of exchanging a device in an industrial automation environment. This is done by assisting (and even automate)this task supported by service and device semantic matching whenever a device has a problem. The infrastructure was implemented and tested in an educational shop floor setup composed by a set of distributed entities each one controlled by its own SOAready PLC. The performed tests revealed that the tasks of discovering and identifying new devices, as well as providing assistance when a device is down offered a valuable contribution and can increase the agility of the overall system when dealing with operation disruptions or modifications at device level

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate
    corecore