1,667 research outputs found

    Mobility on Demand in the United States

    Get PDF
    The growth of shared mobility services and enabling technologies, such as smartphone apps, is contributing to the commodification and aggregation of transportation services. This chapter reviews terms and definitions related to Mobility on Demand (MOD) and Mobility as a Service (MaaS), the mobility marketplace, stakeholders, and enablers. This chapter also reviews the U.S. Department of Transportation’s MOD Sandbox Program, including common opportunities and challenges, partnerships, and case studies for employing on-demand mobility pilots and programs. The chapter concludes with a discussion of vehicle automation and on-demand mobility including pilot projects and the potential transformative impacts of shared automated vehicles on parking, land use, and the built environment

    The Implementation of Smart Mobility for Smart Cities: A Case Study in Qatar

    Get PDF
    This paper contributes to building a systematic view of the mobility characteristics of smart cities by reviewing the lessons learned from the best practices implemented around the world. The main features of smart cities, such as smart homes, smart infrastructure, smart operations, smart services, smart utilities, smart energy, smart governance, smart lifestyle, smart business, and smart mobility in North America, Asia, and Europe are briefly reviewed. The study predominantly focuses on smart mobility features and their implications in newly built smart cities. As a case study, the modern city of Lusail located in the north of Doha, Qatar is considered. The provision of car park management and guidance, real-time traffic signal control, traffic information system, active-modes arrangement in promenade and busy urban avenues, LRT, buses, taxis, and water taxis information system, and multimodal journey planning facilities in the Lusail smart city is discussed in this study. Consequently, the implications of smart mobility features on adopting Intelligent Transportation Systems (ITS) will be studied. The study demonstrates that the implementation of Information and Communication Technologies (ICT) when supported by Intelligent Transportation Systems (ITS), could result in making the most efficient use of existing transportation infrastructure and consequently improve the safety and security, mobility, and the environment in urban areas. The findings of this study could be considered an initial step in the implementation of Mobility-as-a-Service (MaaS) in cities with advanced public transportation such as Doha, the capital of Qatar. Doi: 10.28991/CEJ-2022-08-10-09 Full Text: PD

    Emerging Mobility Services

    Get PDF
    In recent decades social and cultural trends have been rapidly and constantly changing and technological advancements such as smart phones, large-scale electronic devices, The Internet of Things (IOT), etc., have also experienced a more rapidly and accelerated growth. These rapid changes have also brought up some new innovative ideas on how to provide efficient and safe transportation services that can leverage emerging technologies. These opportunities can make transportation affordable and equitable with improved mobility options available to all types of travelers.https://ecommons.udayton.edu/stander_posters/2841/thumbnail.jp

    Intelligent Transportation System for Smart-Cities using Fuzzy Logic

    Get PDF
    According to United Nations population statistics 2017, the world population is 7.6 billion and is growing rapidily alomost 11 billion by end of 21 century with a 70% chance of continued growth, this rapid increasing population have created low standards of living in cities. Smart Cities are facing pressures associated with due innovations and globalization to improve their citizens life. Computational intelligence is the study of adaptive mechanism to facilitate intelligent behavior in changing and complex environments. Traffic congestion and monitoring has become one of the critical issues in big cities. The adaptive mechanism of computational intelligence in changing the behavior of complex environments of smart city is very effective. The developing framework and services for smart-city requires sound infrastructure, latest current technology adoption. A framework model with the integration of cloud-data, social network (SN) services that is collecting stream data with smart sensors in the context of smart cities is proposed. The adaptive mechanism of computational intelligence in changing thebehavior of complex environments of smart city is very effective. A radical framework that enables the analysis of big-data sets stemming from Social Networking (SN) sites. Smart cities understanding is a broad concept only city transportation sector is focused in this article. Fuzzy logic modeling techniques are used in many fields i.e. medical, engineering. business and computing related problems. To solve various traffic management issues in cities a detailed analysis of fuzzy logic system is proposed. This paper presents an analysis of the results achieved using Fuzzy Logic System (FLS) for smart cities. The results are verified using MATLAB Simulation

    Assessing the Barriers to Equity in Smart Mobility Systems: A Case Study of Portland, Oregon

    Get PDF
    There is an active debate about the potential costs and benefits of emerging “smart mobility” systems, especially in how they will serve communities already facing transportation challenges. This paper describes the results of an assessment of these equity issues in the context of lower-income areas of Portland, Oregon, based on a mixture of quantitative and qualitative research. The study found that by lowering costs and improving service for public transit, ridesharing and active transportation, smart mobility systems could address many of the needs of transportation disadvantaged communities. Similar to those found in other case studies, significant barriers prevent smart mobility technologies from benefiting all communities. For example, lower income survey respondents and respondents of color had significantly lower access to the “smart mobility ecosystem” including bank accounts and credit cards, they rely more heavily on paying cash for transit tickets, had lower access to internet at home and work, and were more likely to reduce data use or cancel cell plans because of cost or data restrictions. Respondents were also concerned about information security, as the impacts of loss or theft, especially identity theft can be devastating for lower-income residents. Since integrating payment systems and relying on internet and cell data for mobile applications is a core feature of smart mobility ecosystem, these disparities are significant barriers to the equitable transition to smart mobility. Policy recommendations to address barriers include expanding free and public WiFi, better real-time transit information, improved training, and language translation for phone applications, among other things

    A Framework for Integrating Transportation Into Smart Cities

    Get PDF
    In recent years, economic, environmental, and political forces have quickly given rise to “Smart Cities” -- an array of strategies that can transform transportation in cities. Using a multi-method approach to research and develop a framework for smart cities, this study provides a framework that can be employed to: Understand what a smart city is and how to replicate smart city successes; The role of pilot projects, metrics, and evaluations to test, implement, and replicate strategies; and Understand the role of shared micromobility, big data, and other key issues impacting communities. This research provides recommendations for policy and professional practice as it relates to integrating transportation into smart cities

    Integrating Haptic Feedback into Mobile Location Based Services

    Get PDF
    Haptics is a feedback technology that takes advantage of the human sense of touch by applying forces, vibrations, and/or motions to a haptic-enabled device such as a mobile phone. Historically, human-computer interaction has been visual - text and images on the screen. Haptic feedback can be an important additional method especially in Mobile Location Based Services such as knowledge discovery, pedestrian navigation and notification systems. A knowledge discovery system called the Haptic GeoWand is a low interaction system that allows users to query geo-tagged data around them by using a point-and-scan technique with their mobile device. Haptic Pedestrian is a navigation system for walkers. Four prototypes have been developed classified according to the user’s guidance requirements, the user type (based on spatial skills), and overall system complexity. Haptic Transit is a notification system that provides spatial information to the users of public transport. In all these systems, haptic feedback is used to convey information about location, orientation, density and distance by use of the vibration alarm with varying frequencies and patterns to help understand the physical environment. Trials elicited positive responses from the users who see benefit in being provided with a “heads up” approach to mobile navigation. Results from a memory recall test show that the users of haptic feedback for navigation had better memory recall of the region traversed than the users of landmark images. Haptics integrated into a multi-modal navigation system provides more usable, less distracting but more effective interaction than conventional systems. Enhancements to the current work could include integration of contextual information, detailed large-scale user trials and the exploration of using haptics within confined indoor spaces

    Real-time localisation system for GPS denied open areas using smart street furniture

    Get PDF
    Real-time measurement of crowd dynamics has been attracting significant interest, as it has many applications including real-time monitoring of emergencies and evacuation plans. To effectively measure crowd behaviour, an accurate estimate for pedestrians’ locations is required. However, estimating pedestrians’ locations is a great challenge especially for open areas with poor Global Positioning System (GPS) signal reception and/or lack of infrastructure to install expensive solutions such as video-based systems. Street furniture assets such as rubbish bins have become smart, as they have been equipped with low-power sensors. Currently, their role is limited to certain applications such as waste management. We believe that the role of street furniture can be extended to include building real-time localisation systems as street furniture provides excellent coverage across different areas such as parks, streets, homes, universities. In this thesis, we propose a novel wireless sensor network architecture designed for smart street furniture. We extend the functionality of sensor nodes to act as soft Access Point (AP), sensing Wifi signals received from surrounding Wifi-enabled devices. Our proposed architecture includes a real-time and low-power design for sensor nodes. We attached sensor nodes to rubbish bins located in a busy GPS denied open area at Murdoch University (Perth, Western Australia), known as Bush Court. This enabled us to introduce two unique Wifi-based localisation datasets: the first is the Fingerprint dataset called MurdochBushCourtLoC-FP (MBCLFP) in which four users generated Wifi fingerprints for all available cells in the gridded Bush Court, called Reference Points (RPs), using their smartphones, and the second is the APs dataset called MurdochBushCourtLoC-AP (MBCLAP) that includes auto-generated records received from over 1000 users’ devices. Finally, we developed a real-time localisation approach based on the two datasets using a four-layer deep learning classifier. The approach includes a light-weight algorithm to label the MBCLAP dataset using the MBCLFP dataset and convert the MBCLAP dataset to be synchronous. With the use of our proposed approach, up to 19% improvement in location prediction is achieved

    Networking Transportation

    Get PDF
    Networking Transportation looks at how the digital revolution is changing Greater Philadelphia's transportation system. It recognizes several key digital transportation technologies: Artificial Intelligence, Big Data, connected and automated vehicles, digital mapping, Intelligent Transportation Systems, the Internet of Things, smart cities, real-time information, transportation network companies (TNCs), unmanned aerial systems, and virtual communications. It focuses particularly on key issues surrounding TNCs. It identifies TNCs currently operating in Greater Philadelphia and reviews some of the more innovative services around the world. It presents four alternative future scenarios for their growth: Filling a Niche, A Tale of Two Regions, TNCs Take Off, and Moore Growth. It then creates a future vision for an integrated, multimodal transportation network and identifies infrastructure needs, institutional reforms, and regulatory recommendations intended to help bring about this vision
    • …
    corecore