155,547 research outputs found

    A Web Based Approach to Virtual Appliance Creation, Programming and Management

    Get PDF
    The Internet and Web technology is advancing at a frantic pace, expanding into almost every aspect of our everyday life. One of the latest scientific activities for the Internet and the Web is the so-called pervasive or ubiquitous computing where networking plays a vital role in its core computational framework. In this, people are able to use the Internet and Web to manage the operation of embedded network devices, services and to coordinate their services in ways that create applications such as smart-homes, smart-offices, smart-cars etc, collectively referred to as intelligent environments. For ordinary people (non technologists) to be able to use this technology, it is required that the interaction between the users and the environment must be as transparent and simple as possible, employing intuitive and user-friendly interfaces wherever possible. A popular approach to empowering users to customise the functionality of their environments is via end-user programming. In this work-in-progress paper we describe an approach based on using a web based GUI to augment earlier work of ours concerning an end user programming paradigm known as Pervasive interactive Programming (PiP), in a way that makes it more flexible and easy to use. By doing this, we present a conceptual model and discuss the issues in developing and using this model. © 2010 IEEE

    High-Performance Cloud Computing: A View of Scientific Applications

    Full text link
    Scientific computing often requires the availability of a massive number of computers for performing large scale experiments. Traditionally, these needs have been addressed by using high-performance computing solutions and installed facilities such as clusters and super computers, which are difficult to setup, maintain, and operate. Cloud computing provides scientists with a completely new model of utilizing the computing infrastructure. Compute resources, storage resources, as well as applications, can be dynamically provisioned (and integrated within the existing infrastructure) on a pay per use basis. These resources can be released when they are no more needed. Such services are often offered within the context of a Service Level Agreement (SLA), which ensure the desired Quality of Service (QoS). Aneka, an enterprise Cloud computing solution, harnesses the power of compute resources by relying on private and public Clouds and delivers to users the desired QoS. Its flexible and service based infrastructure supports multiple programming paradigms that make Aneka address a variety of different scenarios: from finance applications to computational science. As examples of scientific computing in the Cloud, we present a preliminary case study on using Aneka for the classification of gene expression data and the execution of fMRI brain imaging workflow.Comment: 13 pages, 9 figures, conference pape

    Research and Development Workstation Environment: the new class of Current Research Information Systems

    Get PDF
    Against the backdrop of the development of modern technologies in the field of scientific research the new class of Current Research Information Systems (CRIS) and related intelligent information technologies has arisen. It was called - Research and Development Workstation Environment (RDWE) - the comprehensive problem-oriented information systems for scientific research and development lifecycle support. The given paper describes design and development fundamentals of the RDWE class systems. The RDWE class system's generalized information model is represented in the article as a three-tuple composite web service that include: a set of atomic web services, each of them can be designed and developed as a microservice or a desktop application, that allows them to be used as an independent software separately; a set of functions, the functional filling-up of the Research and Development Workstation Environment; a subset of atomic web services that are required to implement function of composite web service. In accordance with the fundamental information model of the RDWE class the system for supporting research in the field of ontology engineering - the automated building of applied ontology in an arbitrary domain area, scientific and technical creativity - the automated preparation of application documents for patenting inventions in Ukraine was developed. It was called - Personal Research Information System. A distinctive feature of such systems is the possibility of their problematic orientation to various types of scientific activities by combining on a variety of functional services and adding new ones within the cloud integrated environment. The main results of our work are focused on enhancing the effectiveness of the scientist's research and development lifecycle in the arbitrary domain area.Comment: In English, 13 pages, 1 figure, 1 table, added references in Russian. Published. Prepared for special issue (UkrPROG 2018 conference) of the scientific journal "Problems of programming" (Founder: National Academy of Sciences of Ukraine, Institute of Software Systems of NAS Ukraine

    DEVELOPMENT AND IMPLEMENTATION OF A BIOINFORMATICS ONLINE DISTANCE EDUCATION LEARNING TOOL FOR AFRICA

    Get PDF
    Bioinformatics refers to the creation and advancement of algorithms, computational and statistical techniques and theories for solving formal and practical problems arising from the management and analysis of biological data. However, some parts of the African continent have not been properly sensitized to bio-scientific and computing field. Thus, there is the need for appropriate strategies of introducing the basic components of this emerging scientific field to part of the African populace through the development of an online distance education learning tool. This study involved the design of a bioinformatics online distance educative tool an implementation of the bioinformatics online distance educative tool by a programming approach. Design and implementation were done using the Borland Delphi 7 Enterprise edition within its Integrated Development Environment. The advantage of using Delphi programming language in implementing this useful bioinformatics web tool is that Delphi programming language is an object oriented programming language that has a lot of extra facilities for the enhancement of further technical functions, which ordinary HTML cannot handle. The development and use of a bioinformatics distance education software, as a teaching tool, in some African countries holds great promise for accommodating the needs of the populace, who live in cities, small towns and remote areas
    corecore