1,942 research outputs found

    A personal distributed environment for future mobile systems

    Get PDF
    A Personal Distributed Environment (PDE) embraces a user-centric view of communications that take place against a backdrop of multiple user devices, each with its distinct capabilities, in physically separate locations. This paper provides an overview of a Personal Distributed Environment and some of the research issues related to the implementation of the PDE concept that are being considered in the current Mobile VCE work programme

    Security in Peer-to-Peer SIP VoIP

    Get PDF
    VoIP (Voice over Internet Protocol) is one of the fastest growing technologies in the world. It is used by people all over the world for communication. But with the growing popularity of internet, security is one of the biggest concerns. It is important that the intruders are not able to sniff the packets that are transmitted over the internet through VoIP. Session Initiation Protocol (SIP) is the most popular and commonly used protocol of VoIP. Now days, companies like Skype are using Peer-to-Peer SIP VoIP for faster and better performance. Through this project I am improving an already existing Peer-to-Peer SIP VoIP called SOSIMPLE P2P VoIP by adding confidentiality in the protocol with the help of public key cryptography

    Wireless internet architecture and testbed for wineglass

    Get PDF
    One of the most challenging issues in the area of mobile communication is the deployment of IPbased wireless multimedia networks in public and business environments. The public branch may involve public mobile networks, like UMTS as 3G system, while the business branch introduces local radio access networks by means of W-LANs. Conventional mobile networks realise mobile specific functionality, e.g. mobility management or authentication and accounting, by implementing appropriate mechanisms in specific switching nodes (e.g. SGSN in GPRS). In order to exploit the full potential of IP networking solutions a replacement of these mechanisms by IP-based solutions might be appropriate. In addition current and innovative future services in mobile environments require at least soft-guaranteed, differentiated QoS. Therefore the WINE GLASS project investigates and implements enhanced IP-based techniques supporting mobility and QoS in a wireless Internet architecture. As a means to verify the applicability of the implemented solutions, location-aware services deploying both IP-mobility and QoS mechanisms will be implemented and demonstratedPeer ReviewedPostprint (published version

    Gateway Adaptive Pacing for TCP across Multihop Wireless Networks and the Internet

    Get PDF
    In this paper, we introduce an effective congestion control scheme for TCP over hybrid wireless/wired networks comprising a multihop wireless IEEE 802.11 network and the wired Internet. We propose an adaptive pacing scheme at the Internet gateway for wired-to-wireless TCP flows. Furthermore, we analyze the causes for the unfairness of oncoming TCP flows and propose a scheme to throttle aggressive wired-to-wireless TCP flows at the Internet gateway to achieve nearly optimal fairness. Thus, we denote the introduced congestion control scheme TCP with Gateway Adaptive Pacing (TCP-GAP). For wireless-to-wired flows, we propose an adaptive pacing scheme at the TCP sender. In contrast to previous work, TCP-GAP does not impose any control traffic overhead for achieving fairness among active TCP flows. Moreover, TCP-GAP can be incrementally deployed because it does not require any modifications of TCP in the wired part of the network and is fully TCP-compatible. Extensive simulations using ns-2 show that TCPGAP is highly responsive to varying traffic conditions, provides nearly optimal fairness in all scenarios and achieves up to 42% more goodput than TCP NewReno

    Mobile Computing in Digital Ecosystems: Design Issues and Challenges

    Full text link
    In this paper we argue that the set of wireless, mobile devices (e.g., portable telephones, tablet PCs, GPS navigators, media players) commonly used by human users enables the construction of what we term a digital ecosystem, i.e., an ecosystem constructed out of so-called digital organisms (see below), that can foster the development of novel distributed services. In this context, a human user equipped with his/her own mobile devices, can be though of as a digital organism (DO), a subsystem characterized by a set of peculiar features and resources it can offer to the rest of the ecosystem for use from its peer DOs. The internal organization of the DO must address issues of management of its own resources, including power consumption. Inside the DO and among DOs, peer-to-peer interaction mechanisms can be conveniently deployed to favor resource sharing and data dissemination. Throughout this paper, we show that most of the solutions and technologies needed to construct a digital ecosystem are already available. What is still missing is a framework (i.e., mechanisms, protocols, services) that can support effectively the integration and cooperation of these technologies. In addition, in the following we show that that framework can be implemented as a middleware subsystem that enables novel and ubiquitous forms of computation and communication. Finally, in order to illustrate the effectiveness of our approach, we introduce some experimental results we have obtained from preliminary implementations of (parts of) that subsystem.Comment: Proceedings of the 7th International wireless Communications and Mobile Computing conference (IWCMC-2011), Emergency Management: Communication and Computing Platforms Worksho

    Internames: a name-to-name principle for the future Internet

    Full text link
    We propose Internames, an architectural framework in which names are used to identify all entities involved in communication: contents, users, devices, logical as well as physical points involved in the communication, and services. By not having a static binding between the name of a communication entity and its current location, we allow entities to be mobile, enable them to be reached by any of a number of basic communication primitives, enable communication to span networks with different technologies and allow for disconnected operation. Furthermore, with the ability to communicate between names, the communication path can be dynamically bound to any of a number of end-points, and the end-points themselves could change as needed. A key benefit of our architecture is its ability to accommodate gradual migration from the current IP infrastructure to a future that may be a ubiquitous Information Centric Network. Basic building blocks of Internames are: i) a name-based Application Programming Interface; ii) a separation of identifiers (names) and locators; iii) a powerful Name Resolution Service (NRS) that dynamically maps names to locators, as a function of time/location/context/service; iv) a built-in capacity of evolution, allowing a transparent migration from current networks and the ability to include as particular cases current specific architectures. To achieve this vision, shared by many other researchers, we exploit and expand on Information Centric Networking principles, extending ICN functionality beyond content retrieval, easing send-to-name and push services, and allowing to use names also to route data in the return path. A key role in this architecture is played by the NRS, which allows for the co-existence of multiple network "realms", including current IP and non-IP networks, glued together by a name-to-name overarching communication primitive.Comment: 6 page

    Minimization of Handoff Failure Probability for Next-Generation Wireless Systems

    Full text link
    During the past few years, advances in mobile communication theory have enabled the development and deployment of different wireless technologies, complementary to each other. Hence, their integration can realize a unified wireless system that has the best features of the individual networks. Next-Generation Wireless Systems (NGWS) integrate different wireless systems, each of which is optimized for some specific services and coverage area to provide ubiquitous communications to the mobile users. In this paper, we propose to enhance the handoff performance of mobile IP in wireless IP networks by reducing the false handoff probability in the NGWS handoff management protocol. Based on the information of false handoff probability, we analyze its effect on mobile speed and handoff signaling delay.Comment: 16 Page
    • …
    corecore