13,713 research outputs found

    Video Data Visualization System: Semantic Classification And Personalization

    Full text link
    We present in this paper an intelligent video data visualization tool, based on semantic classification, for retrieving and exploring a large scale corpus of videos. Our work is based on semantic classification resulting from semantic analysis of video. The obtained classes will be projected in the visualization space. The graph is represented by nodes and edges, the nodes are the keyframes of video documents and the edges are the relation between documents and the classes of documents. Finally, we construct the user's profile, based on the interaction with the system, to render the system more adequate to its references.Comment: graphic

    Query-dependent metric learning for adaptive, content-based image browsing and retrieval

    Get PDF

    From Keyword Search to Exploration: How Result Visualization Aids Discovery on the Web

    No full text
    A key to the Web's success is the power of search. The elegant way in which search results are returned is usually remarkably effective. However, for exploratory search in which users need to learn, discover, and understand novel or complex topics, there is substantial room for improvement. Human computer interaction researchers and web browser designers have developed novel strategies to improve Web search by enabling users to conveniently visualize, manipulate, and organize their Web search results. This monograph offers fresh ways to think about search-related cognitive processes and describes innovative design approaches to browsers and related tools. For instance, while key word search presents users with results for specific information (e.g., what is the capitol of Peru), other methods may let users see and explore the contexts of their requests for information (related or previous work, conflicting information), or the properties that associate groups of information assets (group legal decisions by lead attorney). We also consider the both traditional and novel ways in which these strategies have been evaluated. From our review of cognitive processes, browser design, and evaluations, we reflect on the future opportunities and new paradigms for exploring and interacting with Web search results

    Interactive searching and browsing of video archives: using text and using image matching

    Get PDF
    Over the last number of decades much research work has been done in the general area of video and audio analysis. Initially the applications driving this included capturing video in digital form and then being able to store, transmit and render it, which involved a large effort to develop compression and encoding standards. The technology needed to do all this is now easily available and cheap, with applications of digital video processing now commonplace, ranging from CCTV (Closed Circuit TV) for security, to home capture of broadcast TV on home DVRs for personal viewing. One consequence of the development in technology for creating, storing and distributing digital video is that there has been a huge increase in the volume of digital video, and this in turn has created a need for techniques to allow effective management of this video, and by that we mean content management. In the BBC, for example, the archives department receives approximately 500,000 queries per year and has over 350,000 hours of content in its library. Having huge archives of video information is hardly any benefit if we have no effective means of being able to locate video clips which are of relevance to whatever our information needs may be. In this chapter we report our work on developing two specific retrieval and browsing tools for digital video information. Both of these are based on an analysis of the captured video for the purpose of automatically structuring into shots or higher level semantic units like TV news stories. Some also include analysis of the video for the automatic detection of features such as the presence or absence of faces. Both include some elements of searching, where a user specifies a query or information need, and browsing, where a user is allowed to browse through sets of retrieved video shots. We support the presentation of these tools with illustrations of actual video retrieval systems developed and working on hundreds of hours of video content

    Data Portraits and Intermediary Topics: Encouraging Exploration of Politically Diverse Profiles

    Full text link
    In micro-blogging platforms, people connect and interact with others. However, due to cognitive biases, they tend to interact with like-minded people and read agreeable information only. Many efforts to make people connect with those who think differently have not worked well. In this paper, we hypothesize, first, that previous approaches have not worked because they have been direct -- they have tried to explicitly connect people with those having opposing views on sensitive issues. Second, that neither recommendation or presentation of information by themselves are enough to encourage behavioral change. We propose a platform that mixes a recommender algorithm and a visualization-based user interface to explore recommendations. It recommends politically diverse profiles in terms of distance of latent topics, and displays those recommendations in a visual representation of each user's personal content. We performed an "in the wild" evaluation of this platform, and found that people explored more recommendations when using a biased algorithm instead of ours. In line with our hypothesis, we also found that the mixture of our recommender algorithm and our user interface, allowed politically interested users to exhibit an unbiased exploration of the recommended profiles. Finally, our results contribute insights in two aspects: first, which individual differences are important when designing platforms aimed at behavioral change; and second, which algorithms and user interfaces should be mixed to help users avoid cognitive mechanisms that lead to biased behavior.Comment: 12 pages, 7 figures. To be presented at ACM Intelligent User Interfaces 201

    Augmenting citation chain aggregation with article maps

    Get PDF
    Presentation slides available at: https://www.gesis.org/fileadmin/upload/kmir2014/paper4_slides.pdfThis paper presents Voyster, an experimental system that combines citation chain aggregation (CCA) and spatial-semantic maps to support citation search. CCA uses a three-list view to represent the citation network surrounding a ‘pearl’ of known relevant articles, whereby cited and citing articles are ranked according to number of pearl relations. As the pearl grows, this overlap score provides an effective proxy for relevance. However, when the pearl is small or multi-faceted overlap ranking provides poor discrimination. To address this problem we augment the lists with a visual map, wherein articles are organized according to their content similarity. We demonstrate how the article map can help the user to make relevant choices during the early stages of the search pro-cess and also provide useful insights into the thematic structure of the local citation network

    Anatomy-specific classification of medical images using deep convolutional nets

    Full text link
    Automated classification of human anatomy is an important prerequisite for many computer-aided diagnosis systems. The spatial complexity and variability of anatomy throughout the human body makes classification difficult. "Deep learning" methods such as convolutional networks (ConvNets) outperform other state-of-the-art methods in image classification tasks. In this work, we present a method for organ- or body-part-specific anatomical classification of medical images acquired using computed tomography (CT) with ConvNets. We train a ConvNet, using 4,298 separate axial 2D key-images to learn 5 anatomical classes. Key-images were mined from a hospital PACS archive, using a set of 1,675 patients. We show that a data augmentation approach can help to enrich the data set and improve classification performance. Using ConvNets and data augmentation, we achieve anatomy-specific classification error of 5.9 % and area-under-the-curve (AUC) values of an average of 0.998 in testing. We demonstrate that deep learning can be used to train very reliable and accurate classifiers that could initialize further computer-aided diagnosis.Comment: Presented at: 2015 IEEE International Symposium on Biomedical Imaging, April 16-19, 2015, New York Marriott at Brooklyn Bridge, NY, US
    corecore