4,478 research outputs found

    An interface chip for saw based sensor in an ad-hoc network

    Get PDF
    The design of a smart integrated chemical sensor system that will enhance sensor performance and compatibility to ad hoc network architecture remains a challenge. This work involves the design of an interface chip for a Surface Acoustic Wave (SAW) based chemical sensor where the sensor reflects the RF input and introduces a time delay proportional to the concentration of the vapors absorbed by it. The interface chip detects the frequency shift as a function of the chemical species absorbed by the sensor and alerts the ad hoc network controller when a monitored parameter exceeded some threshold, based on local processing and measurements. System components are designed in an RF environment to carry out the local processing and estimation of the chemical absorbed. Simulation results for individual circuit components as well as the complete chip outline the robust performance of the system that improves chemical target detection and reduce false alarms. The design takes into account a sensor system with ten chemical SAW sensors operating at a resonant frequency of 1 GHz and an attenuation of 30 dB. The circuit is designed in to produce an alarm signal for a frequency shift of 1kHz due to a change in chemical concentration at the sensor, in 0.35 ” technology. The performance of the chip can be improved by scaling the design to 0.18 ” technology

    Flight Avionics Hardware Roadmap

    Get PDF
    As part of NASA's Avionics Steering Committee's stated goal to advance the avionics discipline ahead of program and project needs, the committee initiated a multi-Center technology roadmapping activity to create a comprehensive avionics roadmap. The roadmap is intended to strategically guide avionics technology development to effectively meet future NASA missions needs. The scope of the roadmap aligns with the twelve avionics elements defined in the ASC charter, but is subdivided into the following five areas: Foundational Technology (including devices and components), Command and Data Handling, Spaceflight Instrumentation, Communication and Tracking, and Human Interfaces

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Average Load Distance (ALD) radio communication model for wireless sensor networks

    Get PDF
    The lifetime of network is one of the most critical issues that have to be considered in the application of wireless sensor networks. The network nodes are battery powered and remain operational as long as they can transmit the sensed data to the processing (sink) node. The main energy consumption of sensor node can be attributed to the task of data transmission to sink node or cluster head. Hence, conserving energy in transmitting data shall maximize functional life of the wireless networks. In this paper we proposed a computationally efficient Average Load Distance (ALD) communication model for forwarding data from sensor to the cluster head. Experiment results indicate that the proposed model can be up to 88% more efficient over direct mode of communication, in respect of per-round maximum energy consumption. An application study shows that ALD can save up to 89% of wireless sensor networks operational cost when compared to direct mode transmission

    Generalised sensor linearisation and calibration

    Get PDF
    The aim of this work was to conduct a survey of current sensor measurement technologies and investigate sensor linearisation, cahbration and compensation methods m order to determine the methods most suitable for generic embedded sensor implementation. The thesis contains a comprehensive survey of sensor technologies and their interfacing requirements as a prerequisite for determining modules required by the generic embedded sensor interface. Different linearisation and calibration techmques are investigated and the most promising techniques, curve fitting and progressive polynomial calibration method, are then examined in greater detail and simulations performed to compare their performance. The fundamental limitations and trade offs in design and implementation on the microprocessor of these methods are studied. The design of the compensation module is also presented and its implementation on the microprocessor m the form of the C code is described. All methods are tested and implemented on a PIC microcontroller as a part of linearisation, cahbration and compensation module of the generic embedded sensor interface

    Applications of wireless sensor technologies in construction

    Get PDF
    The construction industry is characterised by a number of problems in crucial fields such as health, safety and logistics. Since these problems affect the progress of construction projects, the construction industry has attempted to introduce the use of innovative information and communication technologies on the construction site. Specific technologies which find applicability on the construction site are wireless sensors, and especially radio-frequency identification (RFID) technology. RFID tagging is a technology capable of tracking items. The technology has been applied on the construction site for various applications, such as asset tracking. There are many problems related to health, safety and logistics on the construction site which could be resolved using RFID technology. In the health and safety field, the problems which exist are the monitoring of dangerous areas on the construction site, such as large excavation areas, the collisions between workers and vehicles, between vehicles and equipment and between vehicles, the detection of hazardous substances on the construction site when the construction work has been completed and the collection of hazard notifications from specific areas of the construction site as feedback for the prevention of future accidents. In the logistics field, the tracking of a material during its delivery on the construction site, its transportation to specific subcontractors and its future utilisation as well as the monitoring of the rate of use of materials on the construction site, the checking of the sequence of steel members and the monitoring of the temperature of porous materials are issues which can be realised using RFID technology. In order to facilitate the use of RFID technology for the specific health, safety and logistics problems, a system has been developed. The operation of this system is based on the combined use of hardware and software elements. The hardware elements of the developed system are a wireless local area network, RFID readers and tags. Its software elements are a software development kit based on which, a number of graphical user interfaces have been created for the interaction of the users with the REID tags, and Notepad files which store data collected from REID tags through the graphical user interfaces. Each of the graphical user interfaces is designed in such a way so that it corresponds to the requirements of the health, safety or logistics situation in which it is used. The proposed system has been tested on a simulated construction site by a group of experts and a number of findings have been produced. Specifically, the testing of the proposed system showed that RFID technology can connect the different stages which characterise the construction supply chain. In addition, it showed the capability of the technology to be integrated with construction processes. The testing of the system also revealed the barriers and the enablers to the use of RFID technology in the construction industry. An example of such a barrier is the unwillingness of the people of the construction industry to quit traditional techniques in favour of a new technology. Enablers which enhance the use of RFID technology in the construction industry are the lack of complexity which characterises the operation of RFID tagging and the relatively low cost of RFID tags. In general, RFID technology is an innovative sensor technology which can help the construction industry through its asset tracking ability. However, further research should be done on the improvement of RFID technology on specific characteristics, such as its inability to provide location coordinates and the resilience of the electromagnetic signal emitted by the RFID reader when there are metallic objects around the reader

    2012 PWST Workshop Summary

    Get PDF
    No abstract availabl

    Development of a Robust Wireless Sensor Mesh and Multi-hop Network

    Get PDF
    Wireless networking has evolved rapidly since the first wireless device was invented. Throughout those years, researchers and engineers are struggling to apply the knowledge of wireless networking in useful ways in real life. Wireless Sensor Network (WSN) has been used in many applications, from habitat surveying to critical monitoring. Reliability of the WSN plays a major role in deciding whether it should be used or not in critical applications instead of using traditional wireless technology or wired networking. This project is solely a research and development of routing algorithm for WSN by using an existing source and straight away finding its weak point in order to apply further improvisation. The existing routing algorithms used are the XMESH and Ad-Hoc On-Demand Vector Routing (AODV)

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Development of a low power reactive wireless chemical sensing network

    Get PDF
    • 

    corecore