35 research outputs found

    SHRP - Secure Hybrid Routing Protocol over Hierarchical Wireless Sensor Networks

    Get PDF
    A data collection via secure routing in wireless sensor networks (WSNs) has given attention to one of security issues. WSNs pose unique security challenges due to their inherent limitations in communication and computing, which makes vulnerable to various attacks. Thus, how to gather data securely and efficiently based on routing protocol is an important issue of WSNs. In this paper, we propose a secure hybrid routing protocol, denoted by SHRP, which combines the geographic based scheme and hierarchical scheme. First of all, SHRP differentiates sensor nodes into two categories, nodes with GPS (NG) and nodes with antennas (NA), to put different roles. After proposing a new clustering scheme, which uses a new weight factor to select cluster head efficiently by using energy level, center weight and mobility after forming cluster, we propose routing scheme based on greedy forwarding. The packets in SHRP are protected based on symmetric and asymmetric cryptosystem, which provides confidentiality, integrity and authenticity. The performance analyses are done by using NS2 and show that SHRP could get better results of packet loss rate, delivery ratio, end to end delay and network lifetime compared to the well known previous schemes

    The improvements of power management for clustered type large scope wireless sensor networks2010

    Full text link
    Fuente Aragón, PDL. (2010). The improvements of power management for clustered type large scope wireless sensor networks2010. http://hdl.handle.net/10251/10244.Archivo delegad

    Integrated Framework For Mobile Low Power IoT Devices

    Get PDF
    Ubiquitous object networking has sparked the concept of the Internet of Things (IoT) which defines a new era in the world of networking. The IoT principle can be addressed as one of the important strategic technologies that will positively influence the humans’ life. All the gadgets, appliances and sensors around the world will be connected together to form a smart environment, where all the entities that connected to the Internet can seamlessly share data and resources. The IoT vision allows the embedded devices, e.g. sensor nodes, to be IP-enabled nodes and interconnect with the Internet. The demand for such technique is to make these embedded nodes act as IP-based devices that communicate directly with other IP networks without unnecessary overhead and to feasibly utilize the existing infrastructure built for the Internet. In addition, controlling and monitoring these nodes is maintainable through exploiting the existed tools that already have been developed for the Internet. Exchanging the sensory measurements through the Internet with several end points in the world facilitates achieving the concept of smart environment. Realization of IoT concept needs to be addressed by standardization efforts that will shape the infrastructure of the networks. This has been achieved through the IEEE 802.15.4, 6LoWPAN and IPv6 standards. The bright side of this new technology is faced by several implications since the IoT introduces a new class of security issues, such as each node within the network is considered as a point of vulnerability where an attacker can utilize to add malicious code via accessing the nodes through the Internet or by compromising a node. On the other hand, several IoT applications comprise mobile nodes that is in turn brings new challenges to the research community due to the effect of the node mobility on the network management and performance. Another defect that degrades the network performance is the initialization stage after the node deployment step by which the nodes will be organized into the network. The recent IEEE 802.15.4 has several structural drawbacks that need to be optimized in order to efficiently fulfil the requirements of low power mobile IoT devices. This thesis addresses the aforementioned three issues, network initialization, node mobility and security management. In addition, the related literature is examined to define the set of current issues and to define the set of objectives based upon this. The first contribution is defining a new strategy to initialize the nodes into the network based on the IEEE 802.15.4 standard. A novel mesh-under cluster-based approach is proposed and implemented that efficiently initializes the nodes into clusters and achieves three objectives: low initialization cost, shortest path to the sink node, low operational cost (data forwarding). The second contribution is investigating the mobility issue within the IoT media access control (MAC) infrastructure and determining the related problems and requirements. Based on this, a novel mobility scheme is presented that facilitates node movement inside the network under the IEEE 802.15.4e time slotted channel hopping (TSCH) mode. The proposed model mitigates the problem of frequency channel hopping and slotframe issue in the TSCH mode. The next contribution in this thesis is determining the mobility impact on low latency deterministic (LLDN) network. One of the significant issues of mobility is increasing the latency and degrading packet delivery ratio (PDR). Accordingly, a novel mobility protocol is presented to tackle the mobility issue in LLDN mode and to improve network performance and lessen impact of node movement. The final contribution in this thesis is devising a new key bootstrapping scheme that fits both IEEE 802.15.4 and 6LoWPAN neighbour discovery architectures. The proposed scheme permits a group of nodes to establish the required link keys without excessive communication/computational overhead. Additionally, the scheme supports the mobile node association process by ensuring secure access control to the network and validates mobile node authenticity in order to eliminate any malicious node association. The purposed key management scheme facilitates the replacement of outdated master network keys and release the required master key in a secure manner. Finally, a modified IEEE 802.15.4 link-layer security structure is presented. The modified architecture minimizes both energy consumption and latency incurred through providing authentication/confidentiality services via the IEEE 802.15.4

    Design and Evaluation of Online Fault Diagnosis Protocols forwireless Networks

    Get PDF
    Any node in a network, or a component of it may fail and show undesirable behavior due to physical defects, imperfections, or hardware and/or software related glitches. Presence of faulty hosts in the network affects the computational efficiency, and quality of service (QoS). This calls for the development of efficient fault diagnosis protocols to detect and handle faulty hosts. Fault diagnosis protocols designed for wired networks cannot directly be propagated to wireless networks, due to difference in characteristics, and requirements. This thesis work unravels system level fault diagnosis protocols for wireless networks, particularly for Mobile ad hoc Networks (MANETs), and Wireless Sensor Networks (WSNs), considering faults based on their persistence (permanent, intermittent, and transient), and node mobility. Based on the comparisons of outcomes of the same tasks (comparison model ), a distributed diagnosis protocol has been proposed for static topology MANETs, where a node requires to respond to only one test request from its neighbors, that reduces the communication complexity of the diagnosis process. A novel approach to handle more intractable intermittent faults in dynamic topology MANETs is also discussed.Based on the spatial correlation of sensor measurements, a distributed fault diagnosis protocol is developed to classify the nodes to be fault-free, permanently faulty, or intermittently faulty, in WSNs. The nodes affected by transient faults are often considered fault-free, and should not be isolated from the network. Keeping this objective in mind, we have developed a diagnosis algorithm for WSNs to discriminate transient faults from intermittent and permanent faults. After each node finds the status of all 1-hop neighbors (local diagnostic view), these views are disseminated among the fault-free nodes to deduce the fault status of all nodes in the network (global diagnostic view). A spanning tree based dissemination strategy is adopted, instead of conventional flooding, to have less communication complexity. Analytically, the proposed protocols are shown to be correct, and complete. The protocols are implemented using INET-20111118 (for MANETs) and Castalia-3.2 (forWSNs) on OMNeT++ 4.2 platform. The obtained simulation results for accuracy and false alarm rate vouch the feasibility and efficiency of the proposed algorithms over existing landmark protocols

    Accurate Data Approximation in Constrained Environments

    Get PDF
    Several data reduction techniques have been proposed recently as methods for providing fast and fairly accurate answers to complex queries over large quantities of data. Their use has been widespread, due to the multiple benefits that they may offer in several constrained environments and applications. Compressed data representations require less space to store, less bandwidth to communicate and can provide, due to their size, very fast response times to queries. Sensor networks represent a typical constrained environment, due to the limited processing, storage and battery capabilities of the sensor nodes. Large-scale sensor networks require tight data handling and data dissemination techniques. Transmitting a full-resolution data feed from each sensor back to the base-station is often prohibitive due to (i) limited bandwidth that may not be sufficient to sustain a continuous feed from all sensors and (ii) increased power consumption due to the wireless multi-hop communication. In order to minimize the volume of the transmitted data, we can apply two well data reduction techniques: aggregation and approximation. In this dissertation we propose novel data reduction techniques for the transmission of measurements collected in sensor network environments. We first study the problem of summarizing multi-valued data feeds generated at a single sensor node, a step necessary for the transmission of large amounts of historical information collected at the node. The transmission of these measurements may either be periodic (i.e., when a certain amount of measurements has been collected), or in response to a query from the base station. We then also consider the approximate evaluation of aggregate continuous queries. A continuous query is a query that runs continuously until explicitly terminated by the user. These queries can be used to obtain a live-estimate of some (aggregated) quantity, such as the total number of moving objects detected by the sensors

    Applications of Virtual Reality

    Get PDF
    Information Technology is growing rapidly. With the birth of high-resolution graphics, high-speed computing and user interaction devices Virtual Reality has emerged as a major new technology in the mid 90es, last century. Virtual Reality technology is currently used in a broad range of applications. The best known are games, movies, simulations, therapy. From a manufacturing standpoint, there are some attractive applications including training, education, collaborative work and learning. This book provides an up-to-date discussion of the current research in Virtual Reality and its applications. It describes the current Virtual Reality state-of-the-art and points out many areas where there is still work to be done. We have chosen certain areas to cover in this book, which we believe will have potential significant impact on Virtual Reality and its applications. This book provides a definitive resource for wide variety of people including academicians, designers, developers, educators, engineers, practitioners, researchers, and graduate students

    18th SC@RUG 2020 proceedings 2020-2021

    Get PDF

    18th SC@RUG 2020 proceedings 2020-2021

    Get PDF

    18th SC@RUG 2020 proceedings 2020-2021

    Get PDF
    corecore