247,700 research outputs found

    Genisa: A web-based interactive learning environment for teaching simulation modelling

    Get PDF
    Intelligent Tutoring Systems (ITS) provide students with adaptive instruction and can facilitate the acquisition of problem solving skills in an interactive environment. This paper discusses the role of pedagogical strategies that have been implemented to facilitate the development of simulation modelling knowledge. The learning environment integrates case-based reasoning with interactive tools to guide tutorial remediation. The evaluation of the system shows that the model for pedagogical activities is a useful method for providing efficient simulation modelling instruction

    Non-interference for deterministic interactive programs

    Get PDF
    We consider the problem of defining an appropriate notion of non-interference (NI) for deterministic interactive programs. Previous work on the security of interactive programs by O'Neill, Clarkson and Chong (CSFW 2006) builds on earlier ideas due to Wittbold and Johnson (Symposium on Security and Privacy 1990), and argues for a notion of NI defined in terms of strategies modelling the behaviour of users. We show that, for deterministic interactive programs, it is not necessary to consider strategies and that a simple stream model of the users' behaviour is sufficient. The key technical result is that, for deterministic programs, stream-based NI implies the apparently more general strategy-based NI (in fact we consider a wider class of strategies than those of O'Neill et al). We give our results in terms of a simple notion of Input-Output Labelled Transition System, thus allowing application of the results to a large class of deterministic interactive programming languages

    Interactive situation modelling in knowledge intensive domains

    Get PDF
    Interactive Situation Modelling (ISM) method, a semi-methodological approach, is proposed to tackle issues associated with modelling complex knowledge intensive domains, which cannot be easily modelled using traditional approaches. This paper presents the background and implementation of ISM within a complex domain, where synthesizing knowledge from various sources is critical, and is based on the principles of ethnography within a constructivist framework. Although the motivation for the reported work comes from the application presented in the paper, the actual scope of the paper covers a wide range of issues related to modelling complex systems. The author firstly reviews approaches used for modelling knowledge intensive domains, preceded by a brief discussion about two main issues: symmetry of ignorance and system behaviour, which are often confronted when applying modelling approaches to business domains. The ISM process is then characterized and critiqued with lessons from an exemplar presented to illustrate its effectiveness

    PORGY: a Visual Analytics Platform for System Modelling and Analysis Based on Graph Rewriting

    Get PDF
    PORGY is a visual environment for rule-based modelling based on port graphs and port graph rewrite rules whose application is steered by rewriting strategies. The focus of this demonstration is the visual and interactive features offered by PORGY, which facilitate an exploratory approach to model, simu- late and analyse different ways of applying the rules while recording the model evolution, as well as tracking and plotting system parameters

    Is my configuration any good: checking usability in an interactive sensor-based activity monitor

    Get PDF
    We investigate formal analysis of two aspects of usability in a deployed interactive, configurable and context-aware system: an event-driven, sensor-based homecare activity monitor system. The system was not designed from formal requirements or specification: we model the system as it is in the context of an agile development process. Our aim was to determine if formal modelling and analysis can contribute to improving usability, and if so, which style of modelling is most suitable. The purpose of the analysis is to inform configurers about how to interact with the system, so the system is more usable for participants, and to guide future developments. We consider redundancies in configuration rules defined by carers and participants and the interaction modality of the output messages.Two approaches to modelling are considered: a deep embedding in which devices, sensors and rules are represented explicitly by data structures in the modelling language and non-determinism is employed to model all possible device and sensor states, and a shallow embedding in which the rules and device and sensor states are represented directly in propositional logic. The former requires a conventional machine and a model-checker for analysis, whereas the latter is implemented using a SAT solver directly on the activity monitor hardware. We draw conclusions about the role of formal models and reasoning in deployed systems and the need for clear semantics and ontologies for interaction modalities

    Domain modeling and grid generation for multi-block structured grids with application to aerodynamic and hydrodynamic configurations

    Get PDF
    About five years ago, a joint development was started of a flow simulation system for engine-airframe integration studies on propeller as well as jet aircraft. The initial system was based on the Euler equations and made operational for industrial aerodynamic design work. The system consists of three major components: a domain modeller, for the graphical interactive subdivision of flow domains into an unstructured collection of blocks; a grid generator, for the graphical interactive computation of structured grids in blocks; and a flow solver, for the computation of flows on multi-block grids. The industrial partners of the collaboration and NLR have demonstrated that the domain modeller, grid generator and flow solver can be applied to simulate Euler flows around complete aircraft, including propulsion system simulation. Extension to Navier-Stokes flows is in progress. Delft Hydraulics has shown that both the domain modeller and grid generator can also be applied successfully for hydrodynamic configurations. An overview is given about the main aspects of both domain modelling and grid generation

    Interactive situation modelling in knowledge intensive domains

    Get PDF
    Interactive Situation Modelling (ISM) method, a semi-methodological approach, is proposed to tackle issues associated with modelling complex knowledge intensive domains, which cannot be easily modelled using traditional approaches. This paper presents the background and implementation of ISM within a complex domain, where synthesizing knowledge from various sources is critical, and is based on the principles of ethnography within a constructivist framework. Although the motivation for the reported work comes from the application presented in the paper, the actual scope of the paper covers a wide range of issues related to modelling complex systems. The author firstly reviews approaches used for modelling knowledge intensive domains, preceded by a brief discussion about two main issues: symmetry of ignorance and system behaviour, which are often confronted when applying modelling approaches to business domains. The ISM process is then characterized and critiqued with lessons from an exemplar presented to illustrate its effectiveness.

    Group emotion modelling and the use of middleware for virtual crowds in video-games

    Get PDF
    In this paper we discuss the use of crowd simulation in video-games to augment their realism. Using previous works on emotion modelling and virtual crowds we define a game world in an urban context. To achieve that, we explore a biologically inspired human emotion model, investigate the formation of groups in crowds, and examine the use of physics middleware for crowds. Furthermore, we assess the realism and computational performance of the proposed approach. Our system runs at interactive frame-rate and can generate large crowds which demonstrate complex behaviour

    Investigating post-completion errors with the alloy analyzer

    Get PDF
    Post-completion errors are a particular kind of error found in interactive systems. This type of error occurs through the incorrect sequencing of goals and sub-goals, when the primary goal is achieved before all of the prequisite sub-goals have been satisfied. This paper shows how we can check for this property in a formal model of an interactive system. Specifically, we suggest that lightweight formal methods, such as the Alloy structural modelling language, are particulary well suited for this task. As a case study we develop two example interactive systems. The first is the ubiquitous chocolate machine, where both the chocolate and change must be delivered to the customer. The second model is of a typical cash machine and explores the problems of returning the cash and the cash card in the correct order. Both of these models are developed in the Alloy language
    • …
    corecore