99 research outputs found

    Spam elimination and bias correction : ensuring label quality in crowdsourced tasks.

    Get PDF
    Crowdsourcing is proposed as a powerful mechanism for accomplishing large scale tasks via anonymous workers online. It has been demonstrated as an effective and important approach for collecting labeled data in application domains which require human intelligence, such as image labeling, video annotation, natural language processing, etc. Despite the promises, one big challenge still exists in crowdsourcing systems: the difficulty of controlling the quality of crowds. The workers usually have diverse education levels, personal preferences, and motivations, leading to unknown work performance while completing a crowdsourced task. Among them, some are reliable, and some might provide noisy feedback. It is intrinsic to apply worker filtering approach to crowdsourcing applications, which recognizes and tackles noisy workers, in order to obtain high-quality labels. The presented work in this dissertation provides discussions in this area of research, and proposes efficient probabilistic based worker filtering models to distinguish varied types of poor quality workers. Most of the existing work in literature in the field of worker filtering either only concentrates on binary labeling tasks, or fails to separate the low quality workers whose label errors can be corrected from the other spam workers (with label errors which cannot be corrected). As such, we first propose a Spam Removing and De-biasing Framework (SRDF), to deal with the worker filtering procedure in labeling tasks with numerical label scales. The developed framework can detect spam workers and biased workers separately. The biased workers are defined as those who show tendencies of providing higher (or lower) labels than truths, and their errors are able to be corrected. To tackle the biasing problem, an iterative bias detection approach is introduced to recognize the biased workers. The spam filtering algorithm proposes to eliminate three types of spam workers, including random spammers who provide random labels, uniform spammers who give same labels for most of the items, and sloppy workers who offer low accuracy labels. Integrating the spam filtering and bias detection approaches into aggregating algorithms, which infer truths from labels obtained from crowds, can lead to high quality consensus results. The common characteristic of random spammers and uniform spammers is that they provide useless feedback without making efforts for a labeling task. Thus, it is not necessary to distinguish them separately. In addition, the removal of sloppy workers has great impact on the detection of biased workers, with the SRDF framework. To combat these problems, a different way of worker classification is presented in this dissertation. In particular, the biased workers are classified as a subcategory of sloppy workers. Finally, an ITerative Self Correcting - Truth Discovery (ITSC-TD) framework is then proposed, which can reliably recognize biased workers in ordinal labeling tasks, based on a probabilistic based bias detection model. ITSC-TD estimates true labels through applying an optimization based truth discovery method, which minimizes overall label errors by assigning different weights to workers. The typical tasks posted on popular crowdsourcing platforms, such as MTurk, are simple tasks, which are low in complexity, independent, and require little time to complete. Complex tasks, however, in many cases require the crowd workers to possess specialized skills in task domains. As a result, this type of task is more inclined to have the problem of poor quality of feedback from crowds, compared to simple tasks. As such, we propose a multiple views approach, for the purpose of obtaining high quality consensus labels in complex labeling tasks. In this approach, each view is defined as a labeling critique or rubric, which aims to guide the workers to become aware of the desirable work characteristics or goals. Combining the view labels results in the overall estimated labels for each item. The multiple views approach is developed under the hypothesis that workers\u27 performance might differ from one view to another. Varied weights are then assigned to different views for each worker. Additionally, the ITSC-TD framework is integrated into the multiple views model to achieve high quality estimated truths for each view. Next, we propose a Semi-supervised Worker Filtering (SWF) model to eliminate spam workers, who assign random labels for each item. The SWF approach conducts worker filtering with a limited set of gold truths available as priori. Each worker is associated with a spammer score, which is estimated via the developed semi-supervised model, and low quality workers are efficiently detected by comparing the spammer score with a predefined threshold value. The efficiency of all the developed frameworks and models are demonstrated on simulated and real-world data sets. By comparing the proposed frameworks to a set of state-of-art methodologies, such as expectation maximization based aggregating algorithm, GLAD and optimization based truth discovery approach, in the domain of crowdsourcing, up to 28.0% improvement can be obtained for the accuracy of true label estimation

    "Is a picture of a bird a bird": Policy recommendations for dealing with ambiguity in machine vision models

    Full text link
    Many questions that we ask about the world do not have a single clear answer, yet typical human annotation set-ups in machine learning assume there must be a single ground truth label for all examples in every task. The divergence between reality and practice is stark, especially in cases with inherent ambiguity and where the range of different subjective judgments is wide. Here, we examine the implications of subjective human judgments in the behavioral task of labeling images used to train machine vision models. We identify three primary sources of ambiguity arising from (i) depictions of labels in the images, (ii) raters' backgrounds, and (iii) the task definition. On the basis of the empirical results, we suggest best practices for handling label ambiguity in machine learning datasets

    When in doubt ask the crowd : leveraging collective intelligence for improving event detection and machine learning

    Get PDF
    [no abstract

    Human-AI Interaction in the Presence of Ambiguity: From Deliberation-based Labeling to Ambiguity-aware AI

    Get PDF
    Ambiguity, the quality of being open to more than one interpretation, permeates our lives. It comes in different forms including linguistic and visual ambiguity, arises for various reasons and gives rise to disagreements among human observers that can be hard or impossible to resolve. As artificial intelligence (AI) is increasingly infused into complex domains of human decision making it is crucial that the underlying AI mechanisms also support a notion of ambiguity. Yet, existing AI approaches typically assume that there is a single correct answer for any given input, lacking mechanisms to incorporate diverse human perspectives in various parts of the AI pipeline, including data labeling, model development and user interface design. This dissertation aims to shed light on the question of how humans and AI can be effective partners in the presence of ambiguous problems. To address this question, we begin by studying group deliberation as a tool to detect and analyze ambiguous cases in data labeling. We present three case studies that investigate group deliberation in the context of different labeling tasks, data modalities and types of human labeling expertise. First, we present CrowdDeliberation, an online platform for synchronous group deliberation in novice crowd work, and show how worker deliberation affects resolvability and accuracy in text classification tasks of varying subjectivity. We then translate our findings to the expert domain of medical image classification to demonstrate how imposing additional structure on deliberation arguments can improve the efficiency of the deliberation process without compromising its reliability. Finally, we present CrowdEEG, an online platform for collaborative annotation and deliberation of medical time series data, implementing an asynchronous and highly structured deliberation process. Our findings from an observational study with 36 sleep health professionals help explain how disagreements arise and when they can be resolved through group deliberation. Beyond investigating group deliberation within data labeling, we also demonstrate how the resulting deliberation data can be used to support both human and artificial intelligence. To this end, we first present results from a controlled experiment with ten medical generalists, suggesting that reading deliberation data from medical specialists significantly improves generalists' comprehension and diagnostic accuracy on difficult patient cases. Second, we leverage deliberation data to simulate and investigate AI assistants that not only highlight ambiguous cases, but also explain the underlying sources of ambiguity to end users in human-interpretable terms. We provide evidence suggesting that this form of ambiguity-aware AI can help end users to triage and trust AI-provided data classifications. We conclude by outlining the main contributions of this dissertation and directions for future research

    LIGHTEN: Learning Interactions with Graph and Hierarchical TEmporal Networks for HOI in videos

    Full text link
    Analyzing the interactions between humans and objects from a video includes identification of the relationships between humans and the objects present in the video. It can be thought of as a specialized version of Visual Relationship Detection, wherein one of the objects must be a human. While traditional methods formulate the problem as inference on a sequence of video segments, we present a hierarchical approach, LIGHTEN, to learn visual features to effectively capture spatio-temporal cues at multiple granularities in a video. Unlike current approaches, LIGHTEN avoids using ground truth data like depth maps or 3D human pose, thus increasing generalization across non-RGBD datasets as well. Furthermore, we achieve the same using only the visual features, instead of the commonly used hand-crafted spatial features. We achieve state-of-the-art results in human-object interaction detection (88.9% and 92.6%) and anticipation tasks of CAD-120 and competitive results on image based HOI detection in V-COCO dataset, setting a new benchmark for visual features based approaches. Code for LIGHTEN is available at https://github.com/praneeth11009/LIGHTEN-Learning-Interactions-with-Graphs-and-Hierarchical-TEmporal-Networks-for-HOIComment: 9 pages, 6 figures, ACM Multimedia Conference 202

    Human-in-the-Loop Learning From Crowdsourcing and Social Media

    Get PDF
    Computational social studies using public social media data have become more and more popular because of the large amount of user-generated data available. The richness of social media data, coupled with noise and subjectivity, raise significant challenges for computationally studying social issues in a feasible and scalable manner. Machine learning problems are, as a result, often subjective or ambiguous when humans are involved. That is, humans solving the same problems might come to legitimate but completely different conclusions, based on their personal experiences and beliefs. When building supervised learning models, particularly when using crowdsourced training data, multiple annotations per data item are usually reduced to a single label representing ground truth. This inevitably hides a rich source of diversity and subjectivity of opinions about the labels. Label distribution learning associates for each data item a probability distribution over the labels for that item, thus it can preserve diversities of opinions, beliefs, etc. that conventional learning hides or ignores. We propose a humans-in-the-loop learning framework to model and study large volumes of unlabeled subjective social media data with less human effort. We study various annotation tasks given to crowdsourced annotators and methods for aggregating their contributions in a manner that preserves subjectivity and disagreement. We introduce a strategy for learning label distributions with only five-to-ten labels per item by aggregating human-annotated labels over multiple, semantically related data items. We conduct experiments using our learning framework on data related to two subjective social issues (work and employment, and suicide prevention) that touch many people worldwide. Our methods can be applied to a broad variety of problems, particularly social problems. Our experimental results suggest that specific label aggregation methods can help provide reliable representative semantics at the population level

    Online annotations tools for micro-level human behavior labeling on videos

    Get PDF
    Abstract. Successful machine learning and computer vision approach generally require significant amounts of annotated data for learning. These methods including identification, retrieval, classification of events, and analysis of human behavior from a video. Micro-level human behavior analysis usually requires laborious efforts for obtaining the precise labels. As the quantity of online video grows, the crowdsourcing approach provides a method for workers without a professional background to complete the annotation task. These workers require training to understand implicit knowledge of human behavior. The motivation of this study was to enhance the interaction between annotation workers for training purposes. By observing experienced local researchers in Oulu, the key problem with annotation is the precision of the results. The goal of this study was to provide training tools for people to improve the label quality, it illustrates the importance of training. In this study, a new annotation tool was developed to test workers’ performance in reviewing other annotations. This tool filters very noisy input by comment and vote feature. The result indicated that users were more likely to annotate micro behavior and time that refer to other opinions, and it was a more effective and reliable way to train. Besides, this study reported the development process with React and Firebase, it emphasized the use of more Web resources and tools to develop annotation tools
    • …
    corecore