163,657 research outputs found

    Design and Evaluation of a Probabilistic Music Projection Interface

    Get PDF
    We describe the design and evaluation of a probabilistic interface for music exploration and casual playlist generation. Predicted subjective features, such as mood and genre, inferred from low-level audio features create a 34- dimensional feature space. We use a nonlinear dimensionality reduction algorithm to create 2D music maps of tracks, and augment these with visualisations of probabilistic mappings of selected features and their uncertainty. We evaluated the system in a longitudinal trial in users’ homes over several weeks. Users said they had fun with the interface and liked the casual nature of the playlist generation. Users preferred to generate playlists from a local neighbourhood of the map, rather than from a trajectory, using neighbourhood selection more than three times more often than path selection. Probabilistic highlighting of subjective features led to more focused exploration in mouse activity logs, and 6 of 8 users said they preferred the probabilistic highlighting mode

    An investigation of machine learning based prediction systems

    Get PDF
    Traditionally, researchers have used either o�f-the-shelf models such as COCOMO, or developed local models using statistical techniques such as stepwise regression, to obtain software eff�ort estimates. More recently, attention has turned to a variety of machine learning methods such as artifcial neural networks (ANNs), case-based reasoning (CBR) and rule induction (RI). This paper outlines some comparative research into the use of these three machine learning methods to build software e�ort prediction systems. We briefly describe each method and then apply the techniques to a dataset of 81 software projects derived from a Canadian software house in the late 1980s. We compare the prediction systems in terms of three factors: accuracy, explanatory value and configurability. We show that ANN methods have superior accuracy and that RI methods are least accurate. However, this view is somewhat counteracted by problems with explanatory value and configurability. For example, we found that considerable eff�ort was required to configure the ANN and that this compared very unfavourably with the other techniques, particularly CBR and least squares regression (LSR). We suggest that further work be carried out, both to further explore interaction between the enduser and the prediction system, and also to facilitate configuration, particularly of ANNs

    Knowledge Graph semantic enhancement of input data for improving AI

    Full text link
    Intelligent systems designed using machine learning algorithms require a large number of labeled data. Background knowledge provides complementary, real world factual information that can augment the limited labeled data to train a machine learning algorithm. The term Knowledge Graph (KG) is in vogue as for many practical applications, it is convenient and useful to organize this background knowledge in the form of a graph. Recent academic research and implemented industrial intelligent systems have shown promising performance for machine learning algorithms that combine training data with a knowledge graph. In this article, we discuss the use of relevant KGs to enhance input data for two applications that use machine learning -- recommendation and community detection. The KG improves both accuracy and explainability
    • …
    corecore