6,020 research outputs found

    A Study on Vehicle Trajectory Analysis

    Get PDF
    Successful developments of effective real-time traffic management and information systems demand high quality real time traffic information. In the era of intelligent transportation convergence, traffic monitoring requires traffic sensory technologies. The present analysis extracted data from Mobile Century experiment. The data obtained in the experiment was pre-processed. Based on the pre processed data experimental road map has generated. Individual vehicle tracking has done using trajectory analysis. Finally an attempt has been made for extracting association rules from mobile century dataset using Apriori algorithm

    The Digital Transformation of Automotive Businesses: THREE ARTEFACTS TO SUPPORT DIGITAL SERVICE PROVISION AND INNOVATION

    Get PDF
    Digitalisation and increasing competitive pressure drive original equipment manufacturers (OEMs) to switch their focus towards the provision of digital services and open-up towards increased collaboration and customer integration. This shift implies a significant transformational change from product to product-service providers, where OEMs realign themselves within strategic, business and procedural dimensions. Thus, OEMs must manage digital transformation (DT) processes in order to stay competitive and remain adaptable to changing customer demands. However, OEMs aspiring to become participants or leaders in their domain, struggle to initiate activities as there is a lack of applicable instruments that can guide and support them during this process. Compared to the practical importance of DT, empirical studies are not comprehensive. This study proposes three artefacts, validated within case companies that intend to support automotive OEMs in digital service provisioning. Artefact one, a layered conceptual model for a digital automotive ecosystem, was developed by means of 26 expert interviews. It can serve as a useful instrument for decision makers to strategically plan and outline digital ecosystems. Artefact two is a conceptual reference framework for automotive service systems. The artefact was developed based on an extensive literature review, and the mapping of the business model canvas to the service system domain. The artefact intends to assist OEMs in the efficient conception of digital services under consideration of relevant stakeholders and the necessary infrastructures. Finally, artefact three proposes a methodology by which to transform software readiness assessment processes to fit into the agile software development approach with consideration of the existing operational infrastructure. Overall, the findings contribute to the empirical body of knowledge about the digital transformation of manufacturing industries. The results suggest value creation for digital automotive services occurs in networks among interdependent stakeholders in which customers play an integral role during the services’ life-cycle. The findings further indicate the artefacts as being useful instruments, however, success is dependent on the integration and collaboration of all contributing departments.:Table of Contents Bibliographic Description II Acknowledgment III Table of Contents IV List of Figures VI List of Tables VII List of Abbreviations VIII 1 Introduction 1 1.1 Motivation and Problem Statement 1 1.2 Objective and Research Questions 6 1.3 Research Methodology 7 1.4 Contributions 10 1.5 Outline 12 2 Background 13 2.1 From Interdependent Value Creation to Digital Ecosystems 13 2.1.1 Digitalisation Drives Collaboration 13 2.1.2 Pursuing an Ecosystem Strategy 13 2.1.3 Research Gaps and Strategy Formulation Obstacles 20 2.2 From Products to Product-Service Solutions 22 2.2.1 Digital Service Fulfilment Requires Co-Creational Networks 22 2.2.2 Enhancing Business Models with Digital Services 28 2.2.3 Research Gaps and Service Conception Obstacles 30 2.3 From Linear Development to Continuous Innovation 32 2.3.1 Digital Innovation Demands Digital Transformation 32 2.3.2 Assessing Digital Products 36 2.3.3 Research Gaps and Implementation Obstacles 38 3 Artefact 1: Digital Automotive Ecosystems 41 3.1 Meta Data 41 3.2 Summary 42 3.3 Designing a Layered Conceptual Model of a Digital Ecosystem 45 4 Artefact 2: Conceptual Reference Framework 79 4.1 Meta Data 79 4.2 Summary 80 4.3 On the Move Towards Customer-Centric Automotive Business Models 83 5 Artefact 3: Agile Software Readiness Assessment Procedures 121 5.1 Meta Data 121 5.2 Meta Data 122 5.3 Summary 123 5.4 Adding Agility to Software Readiness Assessment Procedures 126 5.5 Continuous Software Readiness Assessments for Agile Development 147 6 Conclusion and Future Work 158 6.1 Contributions 158 6.1.1 Strategic Dimension: Artefact 1 158 6.1.2 Business Dimension: Artefact 2 159 6.1.3 Process Dimension: Artefact 3 161 6.1.4 Synthesis of Contributions 163 6.2 Implications 167 6.2.1 Scientific Implications 167 6.2.2 Managerial Implications 168 6.2.3 Intelligent Parking Service Example (ParkSpotHelp) 171 6.3 Concluding Remarks 174 6.3.1 Threats to Validity 174 6.3.2 Outlook and Future Research Recommendations 174 Appendix VII Bibliography XX Wissenschaftlicher Werdegang XXXVII Selbständigkeitserklärung XXXVII

    AUTONOMOUS CARS & SOCIETY

    Get PDF
    This document explains the impact of autonomous vehicles on society. The project includes a background section which gives information about the history and technology of autonomous vehicles. To evaluate the socio-economic effect of the autonomous vehicles, we review the benefits and economic savings that will emerge as a result of the introduction of autonomous cars in the economy. Impacts on safety, traffic flow, fuel economy, professional driving and culture are some of the important issues mentioned in this report

    Exploring the relationship between intelligent transport system capability and business agility within the Bus Rapid Transit in South Africa

    Get PDF
    Abstract: More than 65% of South Africans use public transportation to access educational, business, and financial activity. Mobility of individuals and products, particularly in metropolitan areas, suffers from delays, unreliability, absence of safety and air pollution. On the other hand, mobility demand is increasing quicker than South Africa's accessible infrastructure. Public transport services are poor in general, but this picture is transforming a high-quality mass transit system using high-capacity buses along dedicated bus lanes by implementing the Bus Rapid Transit (BRT) system. The BRT system appeared as the leading mode of urban passenger transit in the first decade of the twenty-first century after a few pioneering applications in the later portion of the twentieth century. In addition, Intelligent Transport System’s (ITS) advantages motivate both advanced and developing nations, such as South Africa, to invest in these techniques rather than spending enormous quantities on expanding the transportation network. Various stakeholders in government, academia and industry are in the process of presenting a shared vision of this new strategy and first practical steps should be taken towards this objective. Intelligent transport system capacity can provide better and more inclusive public transportation facilities to commuters through enhanced reliability and accessibility; to operators through efficiency gains; and to customers and operators in terms of cost-effectiveness and service provision affordability. International experience shows that capacities of the ITS can boost transportation profits by as much as 10-15%...D.Phil. (Engineering Management

    Intelligent Transportation Systems (ITS): A Survey Of What It Is, What It Does, Where It Faulters, And Where To Go With It

    Get PDF
    The world of technology continues to find itself incorporated into an ever-expanding number of fields with a rapidly increasing number of applications. One of these is transportation, under the umbrella of Intelligent Transportation Systems (ITS). The intention of this application at a macro scale is to increase the surface transport safety, efficiency, and convenience. As technological improvements continue to be made, ITS grows in popularity and implementation, and is now found in many cities across the United States. Correct implementation of ITS could have huge benefits in the transportation sector, but without thinking about its implications now, there is a risk of worsening already existing issues. Much of the information regarding ITS is scattered through various research publications making it difficult to understand what it is and what effects it has on the places it is implemented in. The purpose of this paper is to provide an easily accessible reference document that gives a general overview of these factors, allowing decision makers to gain a quick understanding of the topic and thus make better informed choices. Some directions for further research are also given to illustrate what is currently unknown about ITS and where potential improvements could be made

    Hybrid Auditory Based Interaction Framework for Driver Assistance System

    Get PDF

    Performance evaluation of vehicular networks in urban environments

    Get PDF
    With the development of all kinds of science and technology nowadays, people are paying more attention to the various aspects of smart cities, especially vehicular networks. Based on the increase in traffic demand, people's dependence on vehicles is also growing gradually, which leads to an intelligent social transportation system being crucial. However, inevitably, there will always be some unexpected car accidents in the urban traffic environment. In this paper, we would mainly focus on the performance evaluation of vehicular networks with a car accident in the urban centre of Barcelona. And we will start from different angles for a multi-dimensional analysis of the impact of different vehicles and environmental factors on urban traffic. In this project, the performance of the vehicular network in the Eixample district would be evaluated from the following four perspectives:1. The configuration of the vehicles 2. The nominal road speed around accident 3. The transmission range 4. The rebroadcasting scheme of the accident message. Through the data analysis of the packet delay, the percentage of warned vehicles, and the warning distance respectively, to explore the impact of diverse factors on the vehicle network and find a better scheme to improve the intelligent transportation system (ITS) in the urban environment
    corecore