1,243 research outputs found

    Quantifying the Impact of Parameter Tuning on Nature-Inspired Algorithms

    Full text link
    The problem of parameterization is often central to the effective deployment of nature-inspired algorithms. However, finding the optimal set of parameter values for a combination of problem instance and solution method is highly challenging, and few concrete guidelines exist on how and when such tuning may be performed. Previous work tends to either focus on a specific algorithm or use benchmark problems, and both of these restrictions limit the applicability of any findings. Here, we examine a number of different algorithms, and study them in a "problem agnostic" fashion (i.e., one that is not tied to specific instances) by considering their performance on fitness landscapes with varying characteristics. Using this approach, we make a number of observations on which algorithms may (or may not) benefit from tuning, and in which specific circumstances.Comment: 8 pages, 7 figures. Accepted at the European Conference on Artificial Life (ECAL) 2013, Taormina, Ital

    Bat Algorithm: Literature Review and Applications

    Full text link
    Bat algorithm (BA) is a bio-inspired algorithm developed by Yang in 2010 and BA has been found to be very efficient. As a result, the literature has expanded significantly in the last 3 years. This paper provides a timely review of the bat algorithm and its new variants. A wide range of diverse applications and case studies are also reviewed and summarized briefly here. Further research topics are also discussed.Comment: 10 page

    Assessing hyper parameter optimization and speedup for convolutional neural networks

    Get PDF
    The increased processing power of graphical processing units (GPUs) and the availability of large image datasets has fostered a renewed interest in extracting semantic information from images. Promising results for complex image categorization problems have been achieved using deep learning, with neural networks comprised of many layers. Convolutional neural networks (CNN) are one such architecture which provides more opportunities for image classification. Advances in CNN enable the development of training models using large labelled image datasets, but the hyper parameters need to be specified, which is challenging and complex due to the large number of parameters. A substantial amount of computational power and processing time is required to determine the optimal hyper parameters to define a model yielding good results. This article provides a survey of the hyper parameter search and optimization methods for CNN architectures

    Optimal SSSC-based power damping inter-area oscillations using firefly and harmony search algorithms

    Get PDF
    The static synchronous series compensator (SSSC) can add a series reactance to the transmission line, and when it is fed using auxiliary signals, it can participate in damping inter-area oscillations by changing the series reactance. In this paper, the effect of the SSSC on small-signal stability is investigated. The design of a controller for damping oscillations is designed and discussed. Moreover, using the firefly and the harmony search algorithms, the optimal parameters controlling SSSC are addressed. The effectiveness of these two algorithms and the rate of SSSC participation in damping inter-area oscillation are also discussed. MATLAB software was used to analyse the models and to perform simulations in the time domain. The simulation results on the sample system, in two areas, indicated the optimal accuracy and precision of the proposed controller

    Capacity Optimization in Dynamically Routing Computer Network Systems

    Get PDF
    A computer network system is a complex system with a great number of dynamic components. There are many devices in the system, such as computers, routers, lines, hubs, and switches. In addition to these hardware systems, many protocols are integrated to set the rules and provide the way of communication. Due to the nature of the system, it is hard to formulate and solve problems analytically without making any assumptions. One of the prominent problems that occur in computer systems is the line capacity assignment problem. In the previous mathematical models, message routes were predetermined and the dynamic nature of the system was neglected. This study deals with the line capacity assignment problem under a dynamically routing policy. Four different computer network topologies are used and solved by two heuristic algorithms via simulation. A dynamic search approach based on the occupancy rate of lines is used to define the consecutive routes of messages. The performances of harmony search and genetic algorithms via simulation are compared with the results of OptQuest, one of the optimization packet programs embedded in simulation software Arena®

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency

    Intelligent Tuned Harmony Search for Solving Economic Dispatch Problem with Valve-point Effects and Prohibited Operating Zones

    Get PDF
    Economic dispatch with valve point effect and Prohibited Operating Zones (POZs) is a non-convex and discontinuous optimization problem. Harmony Search (HS) is one of the recently presented meta-heuristic algorithms for solving optimization problems, which has different variants. The performances of these variants are severely affected by selection of different parameters of the algorithm. Intelligent Tuned Harmony Search (ITHS) is a recently developed variant, which mitigates the drawbacks of parameter initializing by maintaining a proper balance between diversification and intensification throughout the search process. The proposed method is applied to five different cases of power systems and the effectiveness, feasibility, and robustness of method is explored through the comparison with reported results in recent literature. First three case studies are systems with 3, 13, and 40-units, considering valve- point effect. The fourth and fifth cases are six and 15-generation unit taking into account generator constraints including POZs, ramp rate limit and transmission line losses which is a challenging Economic Dispatch (ED) problem due to restriction in search space. Computation results imply the efficiency of the proposed method toward other optimization methods reported in recent literature, judged in terms of the objective function value and solution robustness

    Investigating evolutionary computation with smart mutation for three types of Economic Load Dispatch optimisation problem

    Get PDF
    The Economic Load Dispatch (ELD) problem is an optimisation task concerned with how electricity generating stations can meet their customers’ demands while minimising under/over-generation, and minimising the operational costs of running the generating units. In the conventional or Static Economic Load Dispatch (SELD), an optimal solution is sought in terms of how much power to produce from each of the individual generating units at the power station, while meeting (predicted) customers’ load demands. With the inclusion of a more realistic dynamic view of demand over time and associated constraints, the Dynamic Economic Load Dispatch (DELD) problem is an extension of the SELD, and aims at determining the optimal power generation schedule on a regular basis, revising the power system configuration (subject to constraints) at intervals during the day as demand patterns change. Both the SELD and DELD have been investigated in the recent literature with modern heuristic optimisation approaches providing excellent results in comparison with classical techniques. However, these problems are defined under the assumption of a regulated electricity market, where utilities tend to share their generating resources so as to minimise the total cost of supplying the demanded load. Currently, the electricity distribution scene is progressing towards a restructured, liberalised and competitive market. In this market the utility companies are privatised, and naturally compete with each other to increase their profits, while they also engage in bidding transactions with their customers. This formulation is referred to as: Bid-Based Dynamic Economic Load Dispatch (BBDELD). This thesis proposes a Smart Evolutionary Algorithm (SEA), which combines a standard evolutionary algorithm with a “smart mutation” approach. The so-called ‘smart’ mutation operator focuses mutation on genes contributing most to costs and penalty violations, while obeying operational constraints. We develop specialised versions of SEA for each of the SELD, DELD and BBDELD problems, and show that this approach is superior to previously published approaches in each case. The thesis also applies the approach to a new case study relevant to Nigerian electricity deregulation. Results on this case study indicate that our SEA is able to deal with larger scale energy optimisation tasks

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system
    corecore