954 research outputs found

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Cognitive assisted living ambient system: a survey

    Get PDF
    The demographic change towards an aging population is creating a significant impact and introducing drastic challenges to our society. We therefore need to find ways to assist older people to stay independently and prevent social isolation of these population. Information and Communication Technologies (ICT) provide various solutions to help older adults to improve their quality of life, stay healthier, and live independently for a time. Ambient Assisted Living (AAL) is a field to investigate innovative technologies to provide assistance as well as healthcare and rehabilitation to impaired seniors. The paper provides a review of research background and technologies of AAL

    Connectivity for Healthcare and Well-Being Management: Examples from Six European Projects

    Get PDF
    Technological advances and societal changes in recent years have contributed to a shift in traditional care models and in the relationship between patients and their doctors/carers, with (in general) an increase in the patient-carer physical distance and corresponding changes in the modes of access to relevant care information by all groups. The objective of this paper is to showcase the research efforts of six projects (that the authors are currently, or have recently been, involved in), CAALYX, eCAALYX, COGKNOW, EasyLine+, I2HOME, and SHARE-it, all funded by the European Commission towards a future where citizens can take an active role into managing their own healthcare. Most importantly, sensitive groups of citizens, such as the elderly, chronically ill and those suffering from various physical and cognitive disabilities, will be able to maintain vital and feature-rich connections with their families, friends and healthcare providers, who can then respond to, and prevent, the development of adverse health conditions in those they care for in a timely manner, wherever the carers and the people cared for happen to be

    Towards fog-driven IoT eHealth:Promises and challenges of IoT in medicine and healthcare

    Get PDF
    Internet of Things (IoT) offers a seamless platform to connect people and objects to one another for enriching and making our lives easier. This vision carries us from compute-based centralized schemes to a more distributed environment offering a vast amount of applications such as smart wearables, smart home, smart mobility, and smart cities. In this paper we discuss applicability of IoT in healthcare and medicine by presenting a holistic architecture of IoT eHealth ecosystem. Healthcare is becoming increasingly difficult to manage due to insufficient and less effective healthcare services to meet the increasing demands of rising aging population with chronic diseases. We propose that this requires a transition from the clinic-centric treatment to patient-centric healthcare where each agent such as hospital, patient, and services are seamlessly connected to each other. This patient-centric IoT eHealth ecosystem needs a multi-layer architecture: (1) device, (2) fog computing and (3) cloud to empower handling of complex data in terms of its variety, speed, and latency. This fog-driven IoT architecture is followed by various case examples of services and applications that are implemented on those layers. Those examples range from mobile health, assisted living, e-medicine, implants, early warning systems, to population monitoring in smart cities. We then finally address the challenges of IoT eHealth such as data management, scalability, regulations, interoperability, device–network–human interfaces, security, and privacy

    Data-Driven Understanding of Smart Service Systems Through Text Mining

    Get PDF
    Smart service systems are everywhere, in homes and in the transportation, energy, and healthcare sectors. However, such systems have yet to be fully understood in the literature. Given the widespread applications of and research on smart service systems, we used text mining to develop a unified understanding of such systems in a data-driven way. Specifically, we used a combination of metrics and machine learning algorithms to preprocess and analyze text data related to smart service systems, including text from the scientific literature and news articles. By analyzing 5,378 scientific articles and 1,234 news articles, we identify important keywords, 16 research topics, 4 technology factors, and 13 application areas. We define ???smart service system??? based on the analytics results. Furthermore, we discuss the theoretical and methodological implications of our work, such as the 5Cs (connection, collection, computation, and communications for co-creation) of smart service systems and the text mining approach to understand service research topics. We believe this work, which aims to establish common ground for understanding these systems across multiple disciplinary perspectives, will encourage further research and development of modern service systems

    IoT-Based Applications in Healthcare Devices

    Get PDF
    The last decade has witnessed extensive research in the field of healthcare services and their technological upgradation. To be more specific, the Internet of Things (IoT) has shown potential application in connecting various medical devices, sensors, and healthcare professionals to provide quality medical services in a remote location. This has improved patient safety, reduced healthcare costs, enhanced the accessibility of healthcare services, and increased operational efficiency in the healthcare industry. The current study gives an up-to-date summary of the potential healthcare applications of IoT- (HIoT-) based technologies. Herein, the advancement of the application of the HIoT has been reported from the perspective of enabling technologies, healthcare services, and applications in solving various healthcare issues. Moreover, potential challenges and issues in the HIoT system are also discussed. In sum, the current study provides a comprehensive source of information regarding the different fields of application of HIoT intending to help future researchers, who have the interest to work and make advancements in the field to gain insight into the topic

    Detecting head movement using gyroscope data collected via in-ear wearables

    Get PDF
    Abstract. Head movement is considered as an effective, natural, and simple method to determine the pointing towards an object. Head movement detection technology has significant potentiality in diverse field of applications and studies in this field verify such claim. The application includes fields like users interaction with computers, controlling many devices externally, power wheelchair operation, detecting drivers’ drowsiness while they drive, video surveillance system, and many more. Due to the diversity in application, the method of detecting head movement is also wide-ranging. A number of approaches such as acoustic-based, video-based, computer-vision based, inertial sensor data based head movement detection methods have been introduced by researchers over the years. In order to generate inertial sensor data, various types of wearables are available for example wrist band, smart watch, head-mounted device, and so on. For this thesis, eSense — a representative earable device — that has built-in inertial sensor to generate gyroscope data is employed. This eSense device is a True Wireless Stereo (TWS) earbud. It is augmented with some key equipment such as a 6-axis inertial motion unit, a microphone, and dual mode Bluetooth (Bluetooth Classic and Bluetooth Low Energy). Features are extracted from gyroscope data collected via eSense device. Subsequently, four machine learning models — Random Forest (RF), Support Vector Machine (SVM), Naïve Bayes, and Perceptron — are applied aiming to detect head movement. The performance of these models is evaluated by four different evaluation metrics such as Accuracy, Precision, Recall, and F1 score. Result shows that machine learning models that have been applied in this thesis are able to detect head movement. Comparing the performance of all these machine learning models, Random Forest performs better than others, it is able to detect head movement with approximately 77% accuracy. The accuracy rate of other three models such as Support Vector Machine, Naïve Bayes, and Perceptron is close to each other, where these models detect head movement with about 42%, 40%, and 39% accuracy, respectively. Besides, the result of other evaluation metrics like Precision, Recall, and F1 score verifies that using these machine learning models, different head direction such as left, right, or straight can be detected
    corecore