3,540 research outputs found

    Computationally Evaluating and Reproducing the Beauty of Chinese Calligraphy

    Get PDF
    published_or_final_versio

    Automatic generation of Chinese calligraphic writings with style imitation

    Get PDF
    A parametric representation of stroke shapes is derived by adopting style imitation, a shape-generation-based process, to compactly represent the shapes of single strokes for the automatic generation of Chinese calligraphic writings. An image-processing-based approach is employed to derive the distance between the two strokes. The concept of stroke context is introduced to determine the shape of a stroke to be produced and the distance between two strokes is defined as the shortest distance between two points. An important difference between personal handwriting and a script generated from a font system is that a human writer writes a certain stroke or character differently each time, while a font system generates the same output. The shape-based criterion used in this study makes direct use of areas, which is more reliable than using shape contours because stroke contour details vary greatly.published_or_final_versio

    Integration of an actor-critic model and generative adversarial networks for a Chinese calligraphy robot

    Get PDF
    As a combination of robotic motion planning and Chinese calligraphy culture, robotic calligraphy plays a significant role in the inheritance and education of Chinese calligraphy culture. Most existing calligraphy robots focus on enabling the robots to learn writing through human participation, such as human–robot interactions and manually designed evaluation functions. However, because of the subjectivity of art aesthetics, these existing methods require a large amount of implementation work from human engineers. In addition, the written results cannot be accurately evaluated. To overcome these limitations, in this paper, we propose a robotic calligraphy model that combines a generative adversarial network (GAN) and deep reinforcement learning to enable a calligraphy robot to learn to write Chinese character strokes directly from images captured from Chinese calligraphic textbooks. In our proposed model, to automatically establish an aesthetic evaluation system for Chinese calligraphy, a GAN is first trained to understand and reconstruct stroke images. Then, the discriminator network is independently extracted from the trained GAN and embedded into a variant of the reinforcement learning method, the “actor-critic model”, as a reward function. Thus, a calligraphy robot adopts the improved actor-critic model to learn to write multiple character strokes. The experimental results demonstrate that the proposed model successfully allows a calligraphy robot to write Chinese character strokes based on input stroke images. The performance of our model, compared with the state-of-the-art deep reinforcement learning method, shows the efficacy of the combination approach. In addition, the key technology in this work shows promise as a solution for robotic autonomous assembly

    Use of Automatic Chinese Character Decomposition and Human Gestures for Chinese Calligraphy Robots

    Get PDF
    Conventional Chinese calligraphy robots often suffer from the limited sizes of predefined font databases, which prevent the robots from writing new characters. This paper presents a robotic handwriting system to address such limitations, which extracts Chinese characters from textbooks and uses a robot’s manipulator to write the characters in a different style. The key technologies of the proposed approach include the following: (1) automatically decomposing Chinese characters into strokes using Harris corner detection technology and (2) matching the decomposed strokes to robotic writing trajectories learned from human gestures. Briefly, the system first decomposes a given Chinese character into a set of strokes and obtains the stroke trajectory writing ability by following the gestures performed by a human demonstrator. Then, it applies a stroke classification method that recognizes the decomposed strokes as robotic writing trajectories. Finally, the robot arm is driven to follow the trajectories and thus write the Chinese character. Seven common Chinese characters have been used in an experiment for system validation and evaluation. The experimental results demonstrate the power of the proposed system, given that the robot successfully wrote all the testing characters in the given Chinese calligraphic style

    A data-driven robotic Chinese calligraphy system using convolutional auto-encoder and differential evolution

    Get PDF
    The Chinese stroke evaluation and generation systems required in an autonomous calligraphy robot play a crucial role in producing high-quality writing results with good diversity. These systems often suffer from inefficiency and non-optima despite of intensive research effort investment by the robotic community. This paper proposes a new learning system to allow a robot to automatically learn to write Chinese calligraphy effectively. In the proposed system, the writing quality evaluation subsystem assesses written strokes using a convolutional auto-encoder network (CAE), which enables the generation of aesthetic strokes with various writing styles. The trained CAE network effectively excludes poorly written strokes through stroke reconstruction, but guarantees the inheritance of information from well-written ones. With the support of the evaluation subsystem, the writing trajectory model generation subsystem is realized by multivariate normal distributions optimized by differential evolution (DE), a type of heuristic optimization search algorithm. The proposed approach was validated and evaluated using a dataset of nine stroke categories; high-quality written strokes have been resulted with good diversity which shows the robustness and efficacy of the proposed approach and its potential in autonomous action-state space exploration for other real-world applications

    A Robotic Writing Framework-Learning Human Aesthetic Preferences via Human-Machine Interactions

    Get PDF
    Intelligent robots are required to fully understand human intentions and operations in order to support or collaborate with humans to complete complicated tasks, which is typically implemented by employing human-machine interaction techniques. This paper proposes a new robotic learning framework to perform numeral writing tasks by investigating human-machine interactions with human preferences. In particular, the framework implements a trajectory generative module using a generative adversarial network (GAN)-based method and develops a human preference feedback system to enable the robot to learn human preferences. In addition, a convolutional neural network, acting as a discriminative network, classifies numeral images to support the development of the basic numeral writing ability, and another convolutional neural network, acting as a human preference network, learns a human user’s aesthetic preference by taking the feedback on two written numerical images during the training process. The experimental results show that the written numerals based on the preferences of ten users were different from those of the training data set and that the writing models with the preferences from different users generate numerals in different styles, as evidenced by the Fréchet inception distance (FID) scores. The FID scores of the proposed framework with a preference network were noticeably greater than those of the framework without a preference network. This phenomenon indicates that the human-machine interactions effectively guided the robotic system to learn different writing styles. These results prove that the proposed approach is able to enable the calligraphy robot to successfully write numerals in accordance with the preferences of a human user

    Research on Calligraphy Evaluation Technology Based on Deep Learning

    Get PDF
    Today, when computer-assisted instruction (CAI) is booming, related research in the field of calligraphy education still hasn’t much progress. This main research for the calligraphy beginners to evaluate their works anytime and anywhere. Author uses the literature research and interview to understand the common writing problems of beginners. Then conducts discussion on these problems, design of solutions, research on algorithms, and experimental verification. Based on the ResNet-50 model, through WeChat applet implements for beginners. The main research contents are as follows: (1) In order to achieve good results in calligraphy judgment, this article uses the ResNet-50 model to judge calligraphy. First, adjust the area of the handwritten calligraphy image as the input of the network to a small block suitable for the network. While training the network, adjust the learning rate, the number of image layers and the number of training samples to achieve the optimal. The research results show that ResNet has certain practicality and reference value in the field of calligraphy judgment. Regarding the possible over-fitting problem, this article proposes to improve the accuracy of the judgment by collecting more data and optimizing the data washing process. (2) Combining the rise of WeChat applets, in view of the current WeChat applet learning platform development process and the problem of fewer functional modules, this paper uses cloud development functions to develop a calligraphy learning platform based on WeChat applets. While simplifying the development process, it ensures that the functional modules of the platform meet the needs of teachers and beginners, it has certain practicality and commercial value. After the development of the calligraphy learning applet is completed, it will be submitted for official
    • …
    corecore