12,682 research outputs found

    Multivariate statistical analysis for the identification of potential seafood spoilage indicators

    Get PDF
    Volatile organic compounds (VOCs) characterize the spoilage of seafood packaged under modified atmospheres (MAs) and could thus be used for quality monitoring. However, the VOC profile typically contains numerous multicollinear compounds and depends on the product and storage conditions. Identification of potential spoilage indicators thus calls for multivariate statistics. The aim of the present study was to define suitable statistical methods for this purpose (exploratory analysis) and to consequently characterize the spoilage of brown shrimp (Crangon crangon) and Atlantic cod (Gadus morhua) stored under different conditions (selective analysis). Hierarchical cluster analysis (HCA), principal components analysis (PCA) and partial least squares regression analysis (PLS) were applied as exploratory techniques (brown shrimp, 4 °C, 50%CO2/50%N2) and PLS was further selected for spoilage marker identification. Evolution of acetic acid, 2,3-butanediol, isobutyl alcohol, 3-methyl-1-butanol, dimethyl sulfide, ethyl acetate and trimethylamine was frequently in correspondence with changes in the microbiological quality or sensory rejection. Analysis of these VOCs could thus enhance the detection of seafood spoilage and the development of intelligent packaging technologies.acceptedVersionPeer reviewe

    ADAPTS: An Intelligent Sustainable Conceptual Framework for Engineering Projects

    Get PDF
    This paper presents a conceptual framework for the optimization of environmental sustainability in engineering projects, both for products and industrial facilities or processes. The main objective of this work is to propose a conceptual framework to help researchers to approach optimization under the criteria of sustainability of engineering projects, making use of current Machine Learning techniques. For the development of this conceptual framework, a bibliographic search has been carried out on the Web of Science. From the selected documents and through a hermeneutic procedure the texts have been analyzed and the conceptual framework has been carried out. A graphic representation pyramid shape is shown to clearly define the variables of the proposed conceptual framework and their relationships. The conceptual framework consists of 5 dimensions; its acronym is ADAPTS. In the base are: (1) the Application to which it is intended, (2) the available DAta, (3) the APproach under which it is operated, and (4) the machine learning Tool used. At the top of the pyramid, (5) the necessary Sensing. A study case is proposed to show its applicability. This work is part of a broader line of research, in terms of optimization under sustainability criteria.Telefónica Chair “Intelligence in Networks” of the University of Seville (Spain

    A review of contemporary techniques for measuring ergonomic wear comfort of protective and sport clothing

    Get PDF
    Protective and sport clothing is governed by protection requirements, performance, and comfort of the user. The comfort and impact performance of protective and sport clothing are typically subjectively measured, and this is a multifactorial and dynamic process. The aim of this review paper is to review the contemporary methodologies and approaches for measuring ergonomic wear comfort, including objective and subjective techniques. Special emphasis is given to the discussion of different methods, such as objective techniques, subjective techniques, and a combination of techniques, as well as a new biomechanical approach called modeling of skin. Literature indicates that there are four main techniques to measure wear comfort: subjective evaluation, objective measurements, a combination of subjective and objective techniques, and computer modeling of human–textile interaction. In objective measurement methods, the repeatability of results is excellent, and quantified results are obtained, but in some cases, such quantified results are quite different from the real perception of human comfort. Studies indicate that subjective analysis of comfort is less reliable than objective analysis because human subjects vary among themselves. Therefore, it can be concluded that a combination of objective and subjective measuring techniques could be the valid approach to model the comfort of textile materials

    electronic nose for smart identification of roofing and paving grade asphalt

    Get PDF
    Abstract Asphalt is a complex mixture of hydrocarbons, whose properties strongly depend on the source and type of crude oil and refining processes. From a technical standpoint, intensive investigations carried out by the construction sector, above all by road researchers, have attempted to understand relationships between asphalt binder chemical structure, morphology and physical characteristics. Nevertheless, one challenge that the advance research on asphalt products actually face is to transfer this extremely high level of knowledge to applied industrial technologies for finding easy-to-use, quick and cost-effective test methods for quality control and identification of asphalt binders at refinery, terminal and plant. Thus, this paper focused on the development of a protocol for fingerprinting, including identification and discrimination, of asphalt cements using two different electronic noses (e-noses), also known as artificial olfactory systems (AOS). E-nose is a biomimetic non-destructive intelligent sensing instrument, which is designed to mimic the human sense of smell to detect, compare and classify odor sample, producing a qualitative output (fingerprint). Results suggested that a complementary combination of electronic nose technique and well-established analytical methodologies could be successfully used for the identification and discrimination of roofing and paving grade asphalt cements. Specifically, both sensing instruments were able to perform a good discrimination between products characterized by a different chemical nature and to verify the refinery process stability during production and a batch-to-batch crude oil consistency

    Determining the end-date of long-ripening cheese maturation using NIR hyperspectral image modelling: A feasibility study

    Get PDF
    Near-infrared (874–1734 nm) hyperspectral (NIR-HS) imaging, coupled with chemometric tools, was used to explore the relationship between spectroscopic data and cheese maturation. A predictive tool to determine the end-date of cheese maturation (E-index, in days) was developed using a set of 425 NIR-HS images acquired during industrial-scale cheese production. The NIR-HS images were obtained by scanning the cheeses at 14, 16, 18 and 20 months of ripening, before a final sensorial assessment in which all cheeses were approved by 20 months. Regression modelling by partial least squares (PLS) was used to explore the relationship between average spectra and E-index. The best PLS model achieved 69.6% accuracy in the prediction of E-index when standard normal variate (SNV) correction and mean centring pre-processing were applied. Thus, NIR-HS image modelling can be useful as a complementary tool to optimise the logistics/efficiency of cheese ripening facilities by rapid and non-destructive prediction of the end-date of ripening for individual cheeses. However, the commercial application will require future improvements in the predictive capacity of the model, e.g. for larger datasets and repetitive scans of cheeses on random occasions

    A Rapid Detection of Meat Spoilage using an Electronic Nose and Fuzzy-Wavelet systems

    Get PDF
    Freshness and safety of muscle foods are generally considered as the most important parameters for the food industry. To address the rapid detection of meat spoilage microorganisms during aerobic or modified atmosphere storage, an electronic nose with the aid of fuzzy wavelet network has been considered in this research. The proposed model incorporates a clustering pre-processing stage for the definition of fuzzy rules. The dual purpose of the proposed modelling approach is not only to classify beef samples in the respective quality class (i.e. fresh, semi-fresh and spoiled), but also to predict their associated microbiological population directly from volatile compounds fingerprints. Comparison results against neural networks and neurofuzzy systems indicated that the proposed modelling scheme could be considered as a valuable detection methodology in food microbiolog

    Optimization of an analytical method based on SPME-Arrow and chemometrics for the characterization of the aroma profile of commercial bread

    Get PDF
    A SPME-Arrow GC-MS approach, coupled with chemometrics, was used to thoroughly investigate the impact of different types of yeast (sourdough, bear's yeast and a mixture of both) and their respective leaving time (one, three and five hours) on VOCs of commercial bread samples. This aspect is of paramount importance for the baking industry to adjust recipe modifications and production parameters, as well as to meet consumer needs in formulating new products. A deep learning approach, PARADISe (PARAFAC2-based deconvolution and identification system), was used to analyse the obtained chromatograms in an untargeted manner. In particular, PARADISe, was able to perform a fast deconvolution of the chromatographic peaks directly from raw chromatographic data to allow a putatively identification of 66 volatile organic compounds, including alcohols, esters, carboxylic acids, ketones, aldehydes. Finally, Principal Component Analysis, applied on the areas of the resolved compounds, showed that bread samples differentiate according to their recipe and highlighted the most relevant volatile compounds responsible for the observed differences
    corecore