62 research outputs found

    Managing trust and reliability for indoor tracking systems

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Indoor tracking is a challenging problem. The level of accepted error is on a much smaller scale than that of its outdoor counterpart. While the global positioning system has become omnipresent, and a widely accepted outdoor tracking system it has limitations in indoor environments due to loss or degradation of signal. Many attempts have been made to address this challenge, but currently none have proven to be the de-facto standard. In this thesis, we introduce the concept of opportunistic tracking in which tracking takes place with whatever sensing infrastructure is present – static or mobile, within a given indoor environment. In this approach many of the challenges (e.g., high cost, infeasible infrastructure deployment, etc.) that prohibit usage of existing systems in typical application domains (e.g., asset tracking, emergency rescue) are eliminated. Challenges do still exist when it comes to provide an accurate positional estimate of an entities location in an indoor environment, namely: sensor classification, sensor selection, and multi-sensor data fusion. We propose an enhanced tracking framework that through the infusion of QoS-based selection criteria of trust and reliability we can improve the overall accuracy of the tracking estimate. This improvement is predicated on the introduction of learning techniques to classify sensors that are dynamically discovered as part of this opportunistic tracking approach. This classification allows for sensors to be properly identified and evaluated based upon their specific behavioral characteristics through performance evaluation. This in-depth evaluation of sensors provides the basis for improving the sensor selection process. A side effect of obtaining this improved accuracy is the cost, found in the form of system runtime. This thesis provides a solution for this tradeoff between accuracy and cost through an optimization function that analyzes this tradeoff in an effort to find the optimal subset of sensors to fulfill the goal of tracking an object as it moves indoors. We demonstrate that through this improved sensor classification, selection, data fusion, and tradeoff optimization we can provide an improvement, in terms of accuracy, over other existing indoor tracking systems

    A Brain-Inspired Trust Management Model to Assure Security in a Cloud based IoT Framework for Neuroscience Applications

    Get PDF
    Rapid popularity of Internet of Things (IoT) and cloud computing permits neuroscientists to collect multilevel and multichannel brain data to better understand brain functions, diagnose diseases, and devise treatments. To ensure secure and reliable data communication between end-to-end (E2E) devices supported by current IoT and cloud infrastructure, trust management is needed at the IoT and user ends. This paper introduces a Neuro-Fuzzy based Brain-inspired trust management model (TMM) to secure IoT devices and relay nodes, and to ensure data reliability. The proposed TMM utilizes node behavioral trust and data trust estimated using Adaptive Neuro-Fuzzy Inference System and weighted-additive methods respectively to assess the nodes trustworthiness. In contrast to the existing fuzzy based TMMs, the NS2 simulation results confirm the robustness and accuracy of the proposed TMM in identifying malicious nodes in the communication network. With the growing usage of cloud based IoT frameworks in Neuroscience research, integrating the proposed TMM into the existing infrastructure will assure secure and reliable data communication among the E2E devices.Comment: 17 pages, 10 figures, 2 table

    IoT trust and reputation: a survey and taxonomy

    Get PDF
    IoT is one of the fastest-growing technologies and it is estimated that more than a billion devices would be utilized across the globe by the end of 2030. To maximize the capability of these connected entities, trust and reputation among IoT entities is essential. Several trust management models have been proposed in the IoT environment; however, these schemes have not fully addressed the IoT devices features, such as devices role, device type and its dynamic behavior in a smart environment. As a result, traditional trust and reputation models are insufficient to tackle these characteristics and uncertainty risks while connecting nodes to the network. Whilst continuous study has been carried out and various articles suggest promising solutions in constrained environments, research on trust and reputation is still at its infancy. In this paper, we carry out a comprehensive literature review on state-of-the-art research on the trust and reputation of IoT devices and systems. Specifically, we first propose a new structure, namely a new taxonomy, to organize the trust and reputation models based on the ways trust is managed. The proposed taxonomy comprises of traditional trust management-based systems and artificial intelligence-based systems, and combine both the classes which encourage the existing schemes to adapt these emerging concepts. This collaboration between the conventional mathematical and the advanced ML models result in design schemes that are more robust and efficient. Then we drill down to compare and analyse the methods and applications of these systems based on community-accepted performance metrics, e.g. scalability, delay, cooperativeness and efficiency. Finally, built upon the findings of the analysis, we identify and discuss open research issues and challenges, and further speculate and point out future research directions.Comment: 20 pages, 5 Figures, 3 tables, Journal of cloud computin

    Trust Evaluation in the IoT Environment

    Get PDF
    Along with the many benefits of IoT, its heterogeneity brings a new challenge to establish a trustworthy environment among the objects due to the absence of proper enforcement mechanisms. Further, it can be observed that often these encounters are addressed only concerning the security and privacy matters involved. However, such common network security measures are not adequate to preserve the integrity of information and services exchanged over the internet. Hence, they remain vulnerable to threats ranging from the risks of data management at the cyber-physical layers, to the potential discrimination at the social layer. Therefore, trust in IoT can be considered as a key property to enforce trust among objects to guarantee trustworthy services. Typically, trust revolves around assurance and confidence that people, data, entities, information, or processes will function or behave in expected ways. However, trust enforcement in an artificial society like IoT is far more difficult, as the things do not have an inherited judgmental ability to assess risks and other influencing factors to evaluate trust as humans do. Hence, it is important to quantify the perception of trust such that it can be understood by the artificial agents. In computer science, trust is considered as a computational value depicted by a relationship between trustor and trustee, described in a specific context, measured by trust metrics, and evaluated by a mechanism. Several mechanisms about trust evaluation can be found in the literature. Among them, most of the work has deviated towards security and privacy issues instead of considering the universal meaning of trust and its dynamic nature. Furthermore, they lack a proper trust evaluation model and management platform that addresses all aspects of trust establishment. Hence, it is almost impossible to bring all these solutions to one place and develop a common platform that resolves end-to-end trust issues in a digital environment. Therefore, this thesis takes an attempt to fill these spaces through the following research work. First, this work proposes concrete definitions to formally identify trust as a computational concept and its characteristics. Next, a well-defined trust evaluation model is proposed to identify, evaluate and create trust relationships among objects for calculating trust. Then a trust management platform is presented identifying the major tasks of trust enforcement process including trust data collection, trust data management, trust information analysis, dissemination of trust information and trust information lifecycle management. Next, the thesis proposes several approaches to assess trust attributes and thereby the trust metrics of the above model for trust evaluation. Further, to minimize dependencies with human interactions in evaluating trust, an adaptive trust evaluation model is presented based on the machine learning techniques. From a standardization point of view, the scope of the current standards on network security and cybersecurity needs to be expanded to take trust issues into consideration. Hence, this thesis has provided several inputs towards standardization on trust, including a computational definition of trust, a trust evaluation model targeting both object and data trust, and platform to manage the trust evaluation process

    Noninvasive methods for children\u27s cholesterol level determination

    Get PDF
    Today, there is a controversy about the role of cholesterol in infants and the measurement and management of blood cholesterol in children. Several scientific evidences are supporting relationship between elevated blood cholesterol in children and high cholesterol in adults and development of adult arteriosclerotic diseases such as cardiovascular and cerebrovascular disease. Therefore controlling the level of blood cholesterol in children is very important for the health of the whole population. Non-invasive methods are much more convenient for the children because of their anxieties about blood examinations. In this paper we will present a new try to find non-invasive methods for determining the level of blood cholesterol in children with the use of intelligent system

    Trust-based energy efficient routing protocol for wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) consist of a number of distributed sensor nodes that are connected within a specified area. Generally, WSN is used for monitoring purposes and can be applied in many fields including health, environmental and habitat monitoring, weather forecasting, home automation, and in the military. Similar, to traditional wired networks, WSNs require security measures to ensure a trustworthy environment for communication. However, due to deployment scenarios nodes are exposed to physical capture and inclusion of malicious node led to internal network attacks hence providing the reliable delivery of data and trustworthy communication environment is a real challenge. Also, malicious nodes intentionally dropping data packets, spreading false reporting, and degrading the network performance. Trust based security solutions are regarded as a significant measure to improve the sensor network security, integrity, and identification of malicious nodes. Another extremely important issue for WSNs is energy conversation and efficiency, as energy sources and battery capacity are often limited, meaning that the implementation of efficient, reliable data delivery is an equally important consideration that is made more challenging due to the unpredictable behaviour of sensor nodes. Thus, this research aims to develop a trust and energy efficient routing protocol that ensures a trustworthy environment for communication and reliable delivery of data. Firstly, a Belief based Trust Evaluation Scheme (BTES) is proposed that identifies malicious nodes and maintains a trustworthy environment among sensor nodes while reducing the impact of false reporting. Secondly, a State based Energy Calculation Scheme (SECS) is proposed which periodically evaluates node energy levels, leading to increased network lifetime. Finally, as an integrated outcome of these two schemes, a Trust and Energy Efficient Path Selection (TEEPS) protocol has been proposed. The proposed protocol is benchmarked with A Trust-based Neighbour selection system using activation function (AF-TNS), and with A Novel Trust of dynamic optimization (Trust-Doe). The experimental results show that the proposed protocol performs better as compared to existing schemes in terms of throughput (by 40.14%), packet delivery ratio (by 28.91%), and end-to-end delay (by 41.86%). In conclusion, the proposed routing protocol able to identify malicious nodes provides a trustworthy environment and improves network energy efficiency and lifetime
    • …
    corecore