105 research outputs found

    Self-organizing Coordination of Multi-Agent Microgrid Networks

    Get PDF
    abstract: This work introduces self-organizing techniques to reduce the complexity and burden of coordinating distributed energy resources (DERs) and microgrids that are rapidly increasing in scale globally. Technical and financial evaluations completed for power customers and for utilities identify how disruptions are occurring in conventional energy business models. Analyses completed for Chicago, Seattle, and Phoenix demonstrate site-specific and generalizable findings. Results indicate that net metering had a significant effect on the optimal amount of solar photovoltaics (PV) for households to install and how utilities could recover lost revenue through increasing energy rates or monthly fees. System-wide ramp rate requirements also increased as solar PV penetration increased. These issues are resolved using a generalizable, scalable transactive energy framework for microgrids to enable coordination and automation of DERs and microgrids to ensure cost effective use of energy for all stakeholders. This technique is demonstrated on a 3-node and 9-node network of microgrid nodes with various amounts of load, solar, and storage. Results found that enabling trading could achieve cost savings for all individual nodes and for the network up to 5.4%. Trading behaviors are expressed using an exponential valuation curve that quantifies the reputation of trading partners using historical interactions between nodes for compatibility, familiarity, and acceptance of trades. The same 9-node network configuration is used with varying levels of connectivity, resulting in up to 71% cost savings for individual nodes and up to 13% cost savings for the network as a whole. The effect of a trading fee is also explored to understand how electricity utilities may gain revenue from electricity traded directly between customers. If a utility imposed a trading fee to recoup lost revenue then trading is financially infeasible for agents, but could be feasible if only trying to recoup cost of distribution charges. These scientific findings conclude with a brief discussion of physical deployment opportunities.Dissertation/ThesisDoctoral Dissertation Systems Engineering 201

    Blockchain in the Energy Sector for SDG Achievement

    Get PDF
    Blockchain technology finds application in multiple sectors, including renewable energy. Numerous blockchain-based applications aim to provide support in the production, management, distribution, and consumption of green energy. The benefits offered are not only technological but also social, environmental, and economic. The purpose of this study is to examine how the application of blockchain in the energy industry may affect the achievement of the Sustainable Development Goals (SDGs). This study is composed of two parts. The first part concerns the identification and analysis of the most relevant categories of blockchain applications in the energy sector and their ability to contribute to the achievement of the SDGs. A knowledge base, comprising scientific articles, gray literature, and real-world applications, has been created and analyzed. With a keyword-based approach, each application was associated with one or more SDGs. In the second part, the Sustainability Awareness Framework (SuSAF) was used to examine the findings of the first part of the study and discuss them in terms of five dimensions of sustainability. Finally, potential risks associated with the use of blockchain in the energy sector are also covered. Results reveal that tracking energy production and consumption and renewable energy communities are the applications that have the most beneficial effects, and that the benefits linked to blockchain adoption go beyond the energy sector to include the environment, the economy, industry, infrastructure, smart cities, and society

    Microgrid energy management and monitoring systems: A comprehensive review

    Get PDF
    Microgrid (MG) technologies offer users attractive characteristics such as enhanced power quality, stability, sustainability, and environmentally friendly energy through a control and Energy Management System (EMS). Microgrids are enabled by integrating such distributed energy sources into the utility grid. The microgrid concept is proposed to create a self-contained system composed of distributed energy resources capable of operating in an isolated mode during grid disruptions. With the Internet of Things (IoT) daily technological advancements and updates, intelligent microgrids, the critical components of the future smart grid, are integrating an increasing number of IoT architectures and technologies for applications aimed at developing, controlling, monitoring, and protecting microgrids. Microgrids are composed of various distributed generators (DG), which may include renewable and non-renewable energy sources. As a result, a proper control strategy and monitoring system must guarantee that MG power is transferred efficiently to sensitive loads and the primary grid. This paper evaluates MG control strategies in detail and classifies them according to their level of protection, energy conversion, integration, benefits, and drawbacks. This paper also shows the role of the IoT and monitoring systems for energy management and data analysis in the microgrid. Additionally, this analysis highlights numerous elements, obstacles, and issues regarding the long-term development of MG control technologies in next-generation intelligent grid applications. This paper can be used as a reference for all new microgrid energy management and monitoring research

    Day-ahead forecasting approach for energy consumption of an office building using support vector machines

    Get PDF
    This paper presents a Support Vector Machine (SVM) based approach for energy consumption forecasting. The proposed approach includes the combination of both the historic log of past consumption data and the history of contextual information. By combining variables that influence the electrical energy consumption, such as the temperature, luminosity, seasonality, with the log of consumption data, it is possible for the proposed method by find patterns and correlations between the different sources of data and therefore improves the forecasting performance. A case study based on real data from a pilot microgrid located at the GECAD campus in the Polytechnic of Porto is presented. Data from the pilot buildings are used, and the results are compared to those achieved by several states of the art forecasting approaches. Results show that the proposed method can reach lower forecasting errors than the other considered methods.This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013info:eu-repo/semantics/publishedVersio

    Optimal integration of wind energy with a renewable based microgrid for industrial applications.

    Get PDF
    Wind energy in urban environments is a rapidly developing technology influenced by the terrain specifications, local wind characteristics and urban environments such as buildings architecture. The urban terrain is more complex than for open spaces and has a critical influence on wind flow at the studied site. This approach proposes an integration of the surrounding buildings in the studied site and then simulating the wind flow, considering both simple and advanced turbulence models to quantify and simulate the wind flow fields in an urban environment and evaluate the potential wind energy. These simulations are conducted with an accessible computational fluid dynamic tool (Windsim) implementing available commercial wind turbines and performed on a case study at Agder county in the southern part of Norway for an industrial facility specialized in food production. Several simulations were considered and repeated to achieve a convergence after adding the buildings to the domain, which mainly simulates the wind flow patterns, power density, and annual energy production. These simulations will be compared with previous results, which adapted different manipulation techniques applied on the same site where the elevation and roughness data were manipulated to mimic the actual conditions in the studied urban site. The current approach (adding the buildings) showed a reduction in the average wind speed and annual energy production for certain levels with increased turbulence intensity surrounding the buildings. Moreover, a feasibility study is conducted to analyze the techno-economic of the facility's hybrid system, including the planned installation of a wind energy system using commercial software (HOMER). The simulation results indicated that HOMER is conservative in estimating the annual energy production of both wind and solar power systems. Nevertheless, the analysis showed that integrating a wind turbine of 600 kW would significantly reduce the dependence on the grid and transform the facility into a prosumer with more than 1.6 GWh traded with the grid annually. However, the proposed system's net present cost would be 1.43 M USD based on installation, maintenance, and trading with the grid, without including self-consumption, which counts for approximately 1.5 GWh annually. Moreover, the proposed system has a low levelized cost of energy of 0.039$ per kWh, which is slightly above the levelized cost of wind energy but 2 to 4 times less than the installed solar panels

    Energy Management Systems for Optimal Operation of Electrical Micro/Nanogrids

    Get PDF
    Energy management systems (EMSs) are nowadays considered one of the most relevant technical solutions for enhancing the efficiency, reliability, and economy of smart micro/nanogrids, both in terrestrial and vehicular applications. For this reason, the recent technical literature includes numerous technical contributions on EMSs for residential/commercial/vehicular micro/nanogrids that encompass renewable generators and battery storage systems (BSS) The volume “Energy Management Systems for Optimal Operation of Electrical Micro/Nanogrids”, was released as a Special Issue of the journal Energies, published by MDPI, with the aim of expanding the knowledge on EMSs for the optimal operation of electrical micro/nanogrids by presenting topical and high-quality research papers that address open issues in the identified technical field. The volume is a collection of seven research papers authored by research teams from several countries, where different hot topics are accurately explored. The reader will have the possibility to benefit from original scientific results concerning, in particular, the following key topics: distribution systems; smart home/building; battery energy storage; demand uncertainty; energy forecasting; model predictive control; real-time control, microgrid planning; and electrical vehicles

    Control of Energy Storage

    Get PDF
    Energy storage can provide numerous beneficial services and cost savings within the electricity grid, especially when facing future challenges like renewable and electric vehicle (EV) integration. Public bodies, private companies and individuals are deploying storage facilities for several purposes, including arbitrage, grid support, renewable generation, and demand-side management. Storage deployment can therefore yield benefits like reduced frequency fluctuation, better asset utilisation and more predictable power profiles. Such uses of energy storage can reduce the cost of energy, reduce the strain on the grid, reduce the environmental impact of energy use, and prepare the network for future challenges. This Special Issue of Energies explore the latest developments in the control of energy storage in support of the wider energy network, and focus on the control of storage rather than the storage technology itself

    Hybrid energy system integration and management for solar energy: a review

    Get PDF
    The conventional grid is increasingly integrating renewable energy sources like solar energy to lower carbon emissions and other greenhouse gases. While energy management systems support grid integration by balancing power supply with demand, they are usually either predictive or real-time and therefore unable to utilise the full array of supply and demand responses, limiting grid integration of renewable energy sources. This limitation is overcome by an integrated energy management system. This review examines various concepts related to the integrated energy management system such as the power system configurations it operates in, and the types of supply and demand side responses. These concepts and approaches are particularly relevant for power systems that rely heavily on solar energy and have constraints on energy supply and costs. Building on from there, a comprehensive overview of current research and progress regarding the development of integrated energy management system frameworks, that have both predictive and real-time energy management capabilities, is provided. The potential benefits of an energy management system that integrates solar power forecasting, demand-side management, and supply-side management are explored. Furthermore, design considerations are proposed for creating solar energy forecasting models. The findings from this review have the potential to inform ongoing studies on the design and implementation of integrated energy management system, and their effect on power systems

    Decision Support for Smart Grid Planning and Operation Considering Reliability

    Get PDF
    [ES] Esta tesis aporta contribuciones a los temas de los sistemas de energía y la movilidad eléctrica. Por lo tanto, se proponen soluciones innovadoras para la planificación de la red de distribución radial tradicional sin o con pocas unidades de recursos energéticos distribuidos, y para la planificación, operación, reconfiguración, y gestión de recursos energéticos en redes de distribución en media tensión considerando una alta penetración de los recursos energéticos distribuidos en el contexto de las redes inteligentes. Las preocupaciones sobre la disponibilidad de combustibles fósiles y el aumento de los efectos climático causados por su uso generalizado en la generación de electricidad han llevado a varias políticas e incentivos para atenuar estos problemas. Estas medidas contribuyeron a inversiones considerables en fuentes de energía renovables y motivaron muchas iniciativas de redes inteligentes. Aunque el panorama futuro de los sistemas eléctricos modernos parece muy prometedor, la integración a gran escala de fuentes de energía renovables de naturaleza intermitente, como la eólica y la fotovoltaica, plantea nuevos desafíos y limitaciones en la industria eléctrica actual. Hoy en día, el diseño de la red de distribución no está correctamente preparado para alojar una gran cantidad de fuentes de energía renovables distribuidas. Por lo tanto, los operadores del sistema de distribución reconocen la necesidad de cambiar el diseño de la red mediante la planificación y el refuerzo. A medida que aumenta la penetración de las fuentes de energía renovable, un agregador de energía puede proporcionar una generación y demanda altamente flexibles según lo requiere el paradigma de red inteligente. Además, esta entidad puede permitir lograr una alta integración de la oferta de energía renovable y aumentar el valor para los pequeños productores y consumidores que no pueden negociar directamente en el mercado mayorista. Sin embargo, la entidad agregadora de energía necesita herramientas adecuadas de apoyo a la decisión para superar los desafíos complejos y hacer frente a un gran número de recursos energéticos. Por lo tanto, la gestión de recursos energéticos es crucial para que la entidad agregadora de energía reduzca los costos de operación, aumente de los beneficios, reduzca la huella de carbono y mejore la estabilidad del sistema. En la perspectiva mundial actual, muchas personas se están mudando a las ciudades en busca de una mejor calidad de vida, contribuyendo de esta manera a la continua expansión de las áreas urbanas. En consecuencia, el sector de transportes está jugando un papel crítico en las emisiones de dióxido de carbono. Teniendo en cuenta esto, muchas ventajas medioambientales y económicas pueden ser obtenidas del cambio de los motores de combustión interna a los vehículos eléctricos. Sin embargo, este cambio contribuirá a una carga en la red de distribución, dando lugar a la posibilidad de congestión de la red. Por lo tanto, para facilitar la integración de la carga de los vehículos eléctricos en la red de distribución, un modelo de predicción del comportamiento del usuario de un vehículo eléctrico pode ser una herramienta muy importante. Además, el paradigma de la red inteligente está desafiando la estructura de control y operación convencional diseñado para redes de distribución pasivas. De este modo, la reconfiguración de la red de distribución será una estrategia esencial y significativa para el operador del sistema de distribución. En el estado del arte actual se identificó una falta de modelos, estrategias y herramientas de apoyo a la toma de decisiones adecuadas para los dominios de problemas de planificación, operación y gestión de recursos energéticos de redes de distribución en media tensión con una alta penetración de fuentes de energía distribuidas. Por lo tanto, surgen varios desafíos de investigación que llevan a la necesidad de desarrollar modelos nuevos e innovadores que aborden: a) el impacto de las fuentes de energía renovable y la variabilidad de la demanda en la planificación de la expansión a largo plazo, b) el problema de la gestión de los recursos energéticos a gran escala, teniendo en cuenta la demanda, las fuentes de energía renovables, los vehículos eléctricos y la variabilidad de los precios del mercado, c) el análisis de impacto de los precios de carga dinámicos de los vehículos eléctricos en la operación de la red de distribución y en el comportamiento del usuario del vehículo eléctrico. Además, en el contexto de la red de distribución de media tensión radial tradicional, también se verificó la necesidad de modelos innovadores para mejorar la confiabilidad a través de la identificación de nuevas inversiones en los componentes de la red. Por lo tanto, esta tesis propone soluciones innovadoras para hacer frente a todos estos vacíos y problemas. Para ese propósito, las contribuciones de la tesis, resultan en un innovador sistema de apoyo a la decisión llamado Advanced Decision Support Tool for Smart Grid Planning and Operation (SupporGrid). El SupporGrid se compone de un conjunto de modelos diversificados que juntos contribuyen a manejar la complejidad de la planificación tradicional de las redes de distribución radial (PlanTGrid), y para la planificación (PlanSGrid), operación (OperSGrid), y los problemas de gestión de recursos energéticos (ERMGrid) en redes de distribución de media tensión en el paradigma de red inteligente. PlanTGrid incluye un modelo de planificación de expansión para redes de distribución radial tradicionales para identificar la posibilidad de nuevas inversiones al costo mínimo. La planificación de la expansión a largo plazo de las redes de distribución en un contexto de red inteligente con una alta penetración de fuentes de energía renovables distribuidas y que trata las fuentes de incertidumbre se resuelve mediante el uso PlanSGrid. OperSGrid contiene una herramienta de simulación de viajes de los usuarios de los vehículos eléctricos funcionando en conjunto con un modelo de operación y reconfiguración que utiliza descomposición de Benders y precios marginales para comprender el impacto del precio de carga de energía dinámica en ambos lados: la red de distribución y el usuario de vehículo eléctrico. Para hacer frente a la gestión de recursos energéticos a gran escala con problemas de respuesta a la demanda y sistemas de almacenamiento de energía, así como con la variabilidad de la demanda, las fuentes de energía renovable, los vehículos eléctricos y el precio de mercado, ERMGrid incluye un modelo estocástico de dos etapas. Las metodologías desarrolladas para el sistema de soporte de decisiones se han probado y validado en escenarios realistas. Los resultados prometedores logrados en condiciones realistas respaldan la hipótesis de que las metodologías son adecuadas e innovadoras para la planificación de la red de distribución radial tradicional, y para la planificación, operación, reconfiguración y gestión de recursos energéticos a largo plazo de la red de distribución considerando alta penetración de recursos energéticos distribuidos y de vehículos eléctricos en el contexto de red inteligente. Los resultados prometedores logrados en condiciones realistas respaldan la hipótesis de que las metodologías son adecuadas e innovadoras para la planificación de la red de distribución radial tradicional, y para la planificación, operación, reconfiguración y gestión de recursos energéticos a largo plazo de la red de distribución considerando la alta distribución de recursos energéticos y la penetración de vehículos eléctricos. De hecho, este sistema de apoyo a la decisión mejorará el funcionamiento de las redes de distribución de media tensión, permitiendo ahorros para las partes interesadas
    corecore