13,419 research outputs found

    Available seat counting in public rail transport

    Get PDF
    Surveillance cameras are found almost everywhere today, including vehicles for public transport. A lot of research has already been done on video analysis in open spaces. However, the conditions in a vehicle for public transport differ from these in open spaces, as described in detail in this paper. A use case described in this paper is on counting the available seats in a vehicle using surveillance cameras. We propose an algorithm based on Laplace edge detection, combined with background subtraction

    “No powers, man!”: A student perspective on designing university smart building interactions

    Get PDF
    Smart buildings offer an opportunity for better performance and enhanced experience by contextualising services and interactions to the needs and practices of occupants. Yet, this vision is limited by established approaches to building management, delivered top-down through professional facilities management teams, opening up an interaction-gap between occupants and the spaces they inhabit. To address the challenge of how smart buildings might be more inclusively managed, we present the results of a qualitative study with student occupants of a smart building, with design workshops including building walks and speculative futuring. We develop new understandings of how student occupants conceptualise and evaluate spaces as they experience them, and of how building management practices might evolve with new sociotechnical systems that better leverage occupant agency. Our findings point to important directions for HCI research in this nascent area, including the need for HBI (Human-Building Interaction) design to challenge entrenched roles in building management

    Detecting trash and valuables with machine vision in passenger vehicles

    Get PDF
    The research conducted here will determine the possibility of implementing a machine vision based detection system to identify the presence of trash or valuables in passenger vehicles using a custom designed in-car camera module. The detection system was implemented to capture images of the rear seating compartment of a car intended to be used in shared vehicle fleets. Onboard processing of the image was done by a Raspberry Pi computer while the image classification was done by a remote server. Two vision based algorithmic models were created for the purpose of classifying the images: a convolutional neural network (CNN) and a background subtraction model. The CNN was a fine-tuned VGG16 model and it produced a final prediction accuracy of 91.43% on a batch of 140 test images. For the output analysis, a confusion matrix was used to identify the correlation between correct and false predictions, and the certainties of the three classes for each classified image were examined as well. The estimated execution time of the system from image capture to displaying the results ranged between 5.7 seconds and 11.5 seconds. The background subtraction model failed for the application here due to its inability to form a stable background estimate. The incorrect classifications of the CNN were evident due to the external sources of variation in the images such as extreme shadows and lack of contrast between the objects and its neighbouring background. Improvements in changing the camera location and expanding the training image set were proposed as possible future research

    Designing for adaptive lighting environments : embracing complexity in designing for systems

    Get PDF

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    The European road safety decision support system. A clearinghouse of road safety risks and measures, Deliverable 8.3 of the H2020 project SafetyCube

    Get PDF
    Safety CaUsation, Benefits and Efficiency (SafetyCube) is a European Commission supported Horizon 2020 project with the objective of developing an innovative road safety Decision Support System (DSS) that will enable policy-makers and stakeholders to select and implement the most appropriate strategies, measures and cost-effective approaches to reduce casualties of all road user types and all severities. The core of the SafetyCube project is a comprehensive analysis of accident risks and the effectiveness and cost-benefit of safety measures, focusing on road users, infrastructure, vehicles and post-impace care, framed within a Safe System approach ,with road safety stakeholders at the national level, EU and beyond having involvement at all stages. The present Deliverable (8.3) outlines the methods and outputs of SafetyCube Task 8.3 - ‘Decision Support System of road safety risks and measures’. A Glossary of the SafetyCube DSS is available to the Appendix of this report. The identification and assessment of user needs for a road safety DSS was conducted on the basis of a broad stakeholders’ consultation. Dedicated stakeholder workshops yielded comments and input on the SafetyCube methodology, the structure of the DSS and identification of road safety "hot topics" for human behaviour, infrastructure and vehicles. Additionally, a review of existing decision support systems, was carried out; their functions and contents were assessed, indicating that despite their usefulness they are of relatively narrow scope.... continue

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving
    • 

    corecore